Reorienting the Glioblastoma Microenvironment to Respond to Immunotherapy
重新调整胶质母细胞瘤微环境以响应免疫治疗
基本信息
- 批准号:10554364
- 负责人:
- 金额:$ 57.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectBiologyBiomechanicsBlood - brain barrier anatomyBrainCD14 geneCell SurvivalCerebrospinal FluidCessation of lifeClinicalDataDiagnosisDiseaseExcisionExhibitsExtracellular MatrixFailureFeedsFocal Adhesion Kinase 1Focal AdhesionsFosteringGenetic TranscriptionGenetically Engineered MouseGlioblastomaGliomaHumanHyaluronanImmuneImmune checkpoint inhibitorImmune responseImmune systemImmunocompetentImmunologic MemoryImmunooncologyImmunosuppressionImmunotherapyIntegrinsInterruptionKnowledgeLigandsLinkMalignant NeoplasmsMediatingMessenger RNAModelingMutationMyeloid-derived suppressor cellsNivolumabOperative Surgical ProceduresOrganPD-1 inhibitorsPatientsPharmaceutical PreparationsPhenotypePrognosisPropertyPublishingRadiationRadiation therapyRecurrenceRecurrent tumorSignal TransductionSpinal NeoplasmsSymptomsT cell infiltrationT-Cell ProliferationT-LymphocyteTGFB1 geneTenascinTestingTherapeuticTransforming Growth Factor betaTranslatingTumor ImmunityWorkcancer cellcancer typechemotherapyglioma cell linemechanical propertiesmonocytemouse modelnovel strategiesphase III trialpreclinical studypressurepreventradiation responsereceptorresponsestandard of caresuccesstemozolomidetumortumor microenvironmenttumor-immune system interactions
项目摘要
Abstract
Nowhere is the potential for immune system activation to control and potentially eliminate cancer more
acutely needed than in glioblastoma (GBM) patients; successful use of immuno-oncology (IO) drugs to
eliminate GBM would be transformative. Understanding how to influence anti-tumor immunity in GBM as a
function of its unique microenvironment, which includes the uniquely constituted brain extracellular matrix
(ECM) and the blood-brain barrier protection of parenchyma, is critical to success. Equally important is that
patients most often present with critical symptoms that require rapid treatment, usually surgery followed by
radiation therapy, thus presenting a challenge in terms of how addition of IO drugs will intersect with the effects
of prior treatment. Here we hypothesize that transforming growth factor β (TGFβ) is at the root of the
profoundly immunosuppressive tumor microenvironment (TME) of primary GBM. Furthermore, this
immunosuppressive TME is perpetuated by standard of care, radiation therapy. We postulate that high levels
of TGFβ activity affect the cellular composition and biomechanical properties by respectively, increasing the
presence of myeloid derived suppressor cells (MDSC) and inducing a stiff, hyaluronan and tenascin rich ECM
that activates integrins and focal adhesion kinase (FAK). This mechanopathology feeds forward to greater
TGFβ activation, increased stiffness and activated FAK, all of which foster immunosuppressive myeloid cells
that cordon off GBM to prevent T-cell infiltration. Moreover, the response to surgery and RT reinforce this
biology because both induce TGFβ activation that further ‘stiffens’ the recurrent TME. This vicious cycle must
be interrupted to achieve T-cell infiltration and effective immune response in GBM. We propose to use
immune competent murine models that recapitulate key GBM features to investigate how TGFβ mediates
mechanopathology and immune response, provide detailed analysis of TME remodeling as a function of TGFβ
after radiation, and translate these mechanisms into therapeutic strategies to re-orient the immune landscape
for greater response to IO. Our specific aims are to: 1. Test whether blocking TGFβ can disrupt the cycle that
perpetuates immunosuppressive mechanopathology of primary and recurrent GBM and promote response to
radiation and subsequent immunotherapy in intracranial syngeneic mouse models. 2. Evaluate the
correlations among biomechanics, MDSC, T cell activity and ECM composition as a function of treatment and
TGFβ inhibition. 3. Determine the specific mechanisms by which mechanopathology promote GBM
immunosuppression. By applying the discoveries generated from mechanistic preclinical studies, our
translational objective is to reorient the TME from one that is a barrier to effective immunotherapy to one that
aids successful anti-tumor immunity in humans.
抽象的
免疫系统激活无法控制和消除癌症的潜力更多
急性需要的是胶质母细胞瘤(GBM)患者;成功使用免疫肿瘤(IO)药物
消除GBM将是变革性的。了解如何影响GBM中的抗肿瘤免疫力
其独特的微环境的功能,其中包括独特的脑外基质
(ECM)和副脑屏障保护对成功至关重要。同样重要的是
患者最常出现需要快速治疗的关键症状,通常是手术
放射疗法,因此在IO药物的添加如何与效果相交的角度提出了挑战
先前的治疗。在这里,我们假设转化生长因子β(TGFβ)是
原发性GBM的深刻免疫抑制肿瘤微环境(TME)。此外,这个
免疫抑制性TME通过护理标准,放射疗法永久存在。我们假设高水平
TGFβ活性分别通过分别增加了细胞组成和生物力学特性
髓样衍生的抑制细胞(MDSC)的存在,并诱导僵硬的透明质酸和富含Tenascin的ECM
激活整联蛋白和局灶性粘合剂激酶(FAK)。这种机构病理学提高到更大
TGFβ激活,增加刚度和活化的FAK,所有这些都会促进免疫抑制髓样细胞
该警戒线以防止T细胞渗透。此外,对手术的反应并加强了这一点
生物学,因为两者都会诱导TGFβ激活,从而进一步“僵硬”复发性TME。这个恶性循环必须
被中断以实现GBM中T细胞浸润和有效的免疫响应。我们建议使用
免疫胜任的鼠模型,这些模型概括了关键的GBM特征,以研究TGFβ培养基如何
机械病理学和免疫响应,提供TME重塑作为TGFβ的详细分析
辐射后,并将这些机制转化为理论策略以重新定义免疫景观
为了更大的回应IO。我们的具体目的是:1。测试阻断TGFβ是否可以破坏
永久性的原发性和复发性GBM的免疫抑制机理病理学,并促进对
颅内合成小鼠模型中的辐射和随后的免疫疗法。 2。评估
生物力学,MDSC,T细胞活性和ECM组成之间的相关性与治疗和
TGFβ抑制。 3。确定机理促进GBM的特定机制
免疫抑制。通过应用机械临床前研究产生的发现,我们
翻译目标是将TME从一个有效免疫疗法的障碍的TME重新定位到一个障碍。
有助于人类成功的抗肿瘤免疫。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Positron Emission Tomography Imaging of Functional Transforming Growth Factor β (TGFβ) Activity and Benefit of TGFβ Inhibition in Irradiated Intracranial Tumors.
- DOI:10.1016/j.ijrobp.2020.09.043
- 发表时间:2021-02-01
- 期刊:
- 影响因子:0
- 作者:Gonzalez-Junca A;Reiners O;Borrero-Garcia LD;Beckford-Vera D;Lazar AA;Chou W;Braunstein S;VanBrocklin H;Franc BL;Barcellos-Hoff MH
- 通讯作者:Barcellos-Hoff MH
Molecular Pathways and Mechanisms of TGFβ in Cancer Therapy.
- DOI:10.1158/1078-0432.ccr-21-3750
- 发表时间:2023-06-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
The glycocalyx in tumor progression and metastasis.
肿瘤进展和转移中的糖萼。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Weaver,ValerieM
- 通讯作者:Weaver,ValerieM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Helen Barcellos-Hoff其他文献
Radiation exposure increases mammary stem cell self-renewal in Balb/c mice
辐射暴露增加 Balb/c 小鼠乳腺干细胞的自我更新
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
飯塚大輔;笹谷めぐみ;Mary Helen Barcellos-Hoff;神谷研二 - 通讯作者:
神谷研二
Mary Helen Barcellos-Hoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Helen Barcellos-Hoff', 18)}}的其他基金
Investigating the Genesis of Tumor Immune Microenvironment (TIME) as a function of Inflammation
研究肿瘤免疫微环境 (TIME) 的起源作为炎症的函数
- 批准号:
10588052 - 财政年份:2022
- 资助金额:
$ 57.51万 - 项目类别:
Definition of Immune Infiltrate Phenotype and DNA Damage Response Deficits Across Diverse Murine Mammary Carcinomas
不同鼠类乳腺癌免疫浸润表型和 DNA 损伤反应缺陷的定义
- 批准号:
9891033 - 财政年份:2019
- 资助金额:
$ 57.51万 - 项目类别:
Definition of Immune Infiltrate Phenotype and DNA Damage Response Deficits Across Diverse Murine Mammary Carcinomas
不同鼠类乳腺癌免疫浸润表型和 DNA 损伤反应缺陷的定义
- 批准号:
10589863 - 财政年份:2019
- 资助金额:
$ 57.51万 - 项目类别:
Reorienting the Glioblastoma Microenvironment to Respond to Immunotherapy
重新调整胶质母细胞瘤微环境以响应免疫治疗
- 批准号:
10339330 - 财政年份:2019
- 资助金额:
$ 57.51万 - 项目类别:
Definition of Immune Infiltrate Phenotype and DNA Damage Response Deficits Across Diverse Murine Mammary Carcinomas
不同鼠类乳腺癌免疫浸润表型和 DNA 损伤反应缺陷的定义
- 批准号:
10372935 - 财政年份:2019
- 资助金额:
$ 57.51万 - 项目类别:
Reorienting the Glioblastoma Microenvironment to Respond to Immunotherapy
重新调整胶质母细胞瘤微环境以响应免疫治疗
- 批准号:
10093157 - 财政年份:2019
- 资助金额:
$ 57.51万 - 项目类别:
Definition of Immune Infiltrate Phenotype and DNA Damage Response Deficits Across Diverse Murine Mammary Carcinomas
不同鼠类乳腺癌免疫浸润表型和 DNA 损伤反应缺陷的定义
- 批准号:
10116327 - 财政年份:2019
- 资助金额:
$ 57.51万 - 项目类别:
Contribution of development and age to breast cancer etiology
发育和年龄对乳腺癌病因的贡献
- 批准号:
8972933 - 财政年份:2015
- 资助金额:
$ 57.51万 - 项目类别:
Contextual Glioblastoma Screening For Efficacious Radiation Sensitizers
有效放射增敏剂的胶质母细胞瘤筛查
- 批准号:
8914064 - 财政年份:2014
- 资助金额:
$ 57.51万 - 项目类别:
Contextual Glioblastoma Screening For Efficacious Radiation Sensitizers
有效放射增敏剂的胶质母细胞瘤筛查
- 批准号:
8769836 - 财政年份:2014
- 资助金额:
$ 57.51万 - 项目类别:
相似国自然基金
氮肥减施对豆茬冬小麦土壤氮吸收的影响及其微生物学机制
- 批准号:32372234
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
微塑料对农田土壤团聚体有机碳矿化的影响及其微生物学机制
- 批准号:42307050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
增氧灌溉对水稻籽粒灌浆的影响及生物学机制
- 批准号:32360530
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
全氟化合物暴露通过影响脑结构导致情绪精神障碍的神经生物学机制研究
- 批准号:82371924
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
减氮配合秸秆还田影响团聚体有机碳固存的土壤生物学机制研究
- 批准号:42307453
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
- 批准号:
10648346 - 财政年份:2023
- 资助金额:
$ 57.51万 - 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 57.51万 - 项目类别:
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
- 批准号:
10603708 - 财政年份:2023
- 资助金额:
$ 57.51万 - 项目类别:
Fibroblast-mediated inflammatory resolution of rheumatoid arthritis
成纤维细胞介导的类风湿性关节炎炎症消退
- 批准号:
10604629 - 财政年份:2023
- 资助金额:
$ 57.51万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 57.51万 - 项目类别: