Using electronic medical record data to shorten diagnostic odysseys for rare genetic disorders in children and adults in two New York City health care settings
使用电子病历数据缩短纽约市两个医疗机构儿童和成人罕见遗传性疾病的诊断过程
基本信息
- 批准号:10556355
- 负责人:
- 金额:$ 33.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdolescentAdultAffectAgeAlgorithmsAmbulatory Care FacilitiesBlack raceCaringChildChildhoodClinicalCommunity HospitalsComputerized Medical RecordDNADataDiagnosisDiagnosticDiagnostic testsDiseaseDropsEducationElectronic Health RecordEvaluationFamilyGeneticGenetic ServicesGoalsHealth PersonnelHealthcareHispanicHospitalsInfantInternal MedicineKnowledgeManualsMeasuresMedicalMedical GeneticsModelingNatural Language ProcessingNew York CityOutcomePatientsPhasePilot ProjectsPopulationPredictive ValueProcessRare DiseasesRiskSiteSurveysTestingTimeToddlerTrainingUnderserved Populationage groupagedalgorithm developmentbody systemcare burdencohortelectronic health record systemelectronic structureevaluation/testinggenetic testinghealth care settingsimprovedmultidisciplinarynoveloutpatient programsoutreachpandemic diseasepatient populationpediatric patientspediatricianphenotyping algorithmprogramsrare genetic disordertelehealthtraitworking classyoung adult
项目摘要
Rare genetic diseases affect 3.5-6% of the population and are associated with diagnostic odysseys that can
last up to decades. As first steps towards shortening diagnostic odysseys for infants and toddlers, we
developed rules-based and natural language processing- (NLP-) based algorithms to identify infants and
children aged 0–3 years who were typically ill. Our algorithms were accurate for identify atypical ill patients at
these ages from electronic health records (EHRs). Cohorts so identified were strongly enriched for patients
who had undergone genetic testing. Manual EHR review for such atypically ill patient who had never been
evaluated for a rare genetic disease revealed that 52% could appropriately be referred for such an evaluation.
During the UG3 phase, we will create a novel outpatient clinic, Mount Sinai Genetics Outreach (GO), staffed
with medical geneticists with prior pediatric and internal medicine training, to evaluate patients identified by our
EHR phenotyping algorithms. In a pilot study, we will deploy rules- and NLP-based algorithms to identify 200
children aged 0-12 years with >50% risk of having an undiagnosed rare genetic trait. We will survey
pediatricians at five practices for baseline knowledge about diagnostic odysseys and genetic testing, provide
education about the topic and then study the impact of our algorithm deployment. For patients referred to
Mount Sinai GO, we will determine the outcomes of clinical genetic evaluations and diagnostic testing,
including impact on subsequent health care. In order to improve our existing algorithms, we developed an
automated abstraction engine that identifies patients diagnosed with 164 rare genetic disorders with 83%
accuracy. We will expand this to more traits and use their EHR data to improve our pediatric EHR phenotyping
algorithms. The goal is to increase sensitivity, currently at ~25%, without dropping precision below 50%.
During the UH3 phase, we will deploy our optimized rare disease-detecting algorithms in a non-academic
health care setting, Mount Sinai South Nassau Hospital, a non-academic community hospital setting without
onsite medical genetic services. Our model will leverage pandemic-accelerated expertise in telehealth to
facilitate access of underserved populations to genetics services. Our goal will be to achieve similar sensitivity
and precision with our pediatric algorithms as well as a comparably successful referral mechanism. Also, we
will extend our clinical rule-based and NLP algorithms to detect adolescent and adult patients likely to have
rare genetic disorders and assess the impact of our approach on diagnostic odysseys. We will alter our
pediatric rules-based algorithm, first to patients aged 12-21 years and then to younger adults. We will leverage
our automated abstraction engine for rare genetic disease for iterative improvements. For adults, we will class
traits by organ system in order to improve cohort size/statistical power. Finally, we will assemble and study
information about diagnostic odysseys per se, including the impact of our algorithms in shortening them.
罕见的遗传疾病会影响3.5-6%的人口,并且与可以
最后几十年。作为缩短婴儿和幼儿诊断奥德赛的第一步,我们
基于规则的和自然语言处理 - 基于基于规则的语言 - (NLP-)算法,以识别婴儿和
年龄在0-3岁的儿童通常病。我们的算法是准确的,可以在
这些年龄来自电子健康记录(EHR)。如此确定的同类人群强烈富含患者
经过基因检测的人。从未去过的这种非典型病人的手册EHR审查
评估罕见的遗传疾病表明,可以适当地转介52%的评估。
在UG3阶段,我们将创建一个新颖的门诊诊所,西奈山遗传学外展(GO),配备人员
与接受先前儿科和内科培训的医学遗传学家一起评估我们的患者
EHR表型算法。在一项试点研究中,我们将部署基于规则和NLP的算法来识别200
年龄为0-12岁的儿童,其非居住的稀有遗传特征的风险> 50%。我们将调查
儿科医生以五种实践的基线知识,以了解诊断奥德赛和基因检测,提供
有关该主题的教育,然后研究我们算法部署的影响。适用于
西奈山,我们将确定临床遗传评估和诊断测试的结果,
包括对随后的医疗保健的影响。为了改善现有算法,我们开发了
自动抽象引擎鉴定患者患者患有164种稀有遗传疾病,83%
准确性。我们将将其扩展到更多特征,并使用其EHR数据来改善我们的小儿EHR表型
算法。目的是提高灵敏度,目前约为25%,而不会将精度降至50%以下。
在UH3阶段,我们将在非学术中部署优化的稀有疾病检测算法
卫生保健环境,西奈山拿骚山医院,一个非学术社区医院,没有
现场医疗遗传服务。我们的模型将利用远程医疗中大流行的专业知识
促进服务不足的人群进入遗传学服务。我们的目标是实现类似的灵敏度
以及我们的儿科算法以及相当成功的推荐机制的精确度。另外,我们
将扩展我们的基于临床规则的NLP算法,以检测青少年和可能具有的成年患者
罕见的遗传疾病并评估我们的方法对诊断奥德赛的影响。我们将改变我们的
基于儿科规则的算法,首先是12-21岁的患者,然后是年轻人。我们将利用
我们用于罕见遗传疾病的自动化抽象引擎,以进行迭代改善。对于成年人,我们将上课
器官系统的特征是为了提高队列大小/统计能力。最后,我们将组装和研究
有关诊断奥德赛本身的信息,包括我们算法在缩短它们中的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANISHA BALWANI其他文献
MANISHA BALWANI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANISHA BALWANI', 18)}}的其他基金
Using electronic medical record data to shorten diagnostic odysseys for rare genetic disorders in children and adults in two New York City health care settings
使用电子病历数据缩短纽约市两个医疗机构儿童和成人罕见遗传性疾病的诊断过程
- 批准号:
10395124 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Clinical and Molecular Studies of the Erythropoietic Protoporphyria Phenotype
红细胞生成性原卟啉症表型的临床和分子研究
- 批准号:
8509354 - 财政年份:2013
- 资助金额:
$ 33.8万 - 项目类别:
Clinical and Molecular Studies of the Erythropoietic Protoporphyria Phenotype
红细胞生成性原卟啉症表型的临床和分子研究
- 批准号:
8866392 - 财政年份:2013
- 资助金额:
$ 33.8万 - 项目类别:
Clinical and Molecular Studies of the Erythropoietic Protoporphyria Phenotype
红细胞生成性原卟啉症表型的临床和分子研究
- 批准号:
8617270 - 财政年份:2013
- 资助金额:
$ 33.8万 - 项目类别:
Administrative Supplemental for Porphyria Rare Disease Clinical Research Consortium (RDCRC)
卟啉症罕见病临床研究联盟 (RDCRC) 行政补充文件
- 批准号:
10599619 - 财政年份:2009
- 资助金额:
$ 33.8万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting PLK1 signaling for the treatment of fibrolamellar carcinoma
靶向 PLK1 信号传导治疗纤维板层癌
- 批准号:
10742683 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Clinical, molecular, and immune characterization of naturally occurring osteosarcoma in dogs
犬自然发生的骨肉瘤的临床、分子和免疫特征
- 批准号:
10717426 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Neurodevelopment of exploration and alcohol problems in adolescence
青春期探索和酒精问题的神经发育
- 批准号:
10628964 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Substance Use and Firearm Injuries among Medicaid-enrolled Youth
参加医疗补助的青少年的药物使用和枪伤
- 批准号:
10811094 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别: