Data Analysis Core
数据分析核心
基本信息
- 批准号:10553047
- 负责人:
- 金额:$ 57.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAgeAnti-Inflammatory AgentsAtlasesBackBiologicalBiological AssayBone MarrowBrainBreastCISH geneCandidate Disease GeneCell AgingCell modelCellsChromatinCollaborationsColonCommunitiesComputer softwareDNA MethylationDataData AnalysesData AnalyticsData Coordinating CenterData FilesData SetEnhancersEnsureEpigenetic ProcessExhibitsFAIR principlesFemaleGene ExpressionGenesGeneticGenetic TranscriptionGenomicsGerm CellsGoalsHepatocyteHippocampus (Brain)ImageLinkLiverLongevityMachine LearningMapsMetadataModelingMolecular ConformationMusPathway interactionsPharmacologyPhenotypePopulationProcessPublishingRecording of previous eventsRegulationRegulatory ElementReproducibilityResearch DesignResolutionSpace PerceptionTissuesWorkage groupanalytical methodanalytical toolbasecell typechromatin modificationdata formatdata qualitydata repositorydata resourcedata sharingdata standardsepigenomeepigenomicsexperienceexperimental studyfile formatgenomic datagenomic signaturehistone modificationinteroperabilitymachine learning classifiermachine learning modelmalemolecular phenotypemouse modelmultiple omicsopen sourceprogramspromoterpublic repositoryrepositorysenescencesingle cell analysissingle cell sequencingtranscriptometranscriptomicsvalidation studies
项目摘要
PROJECT SUMMARY
The Data Analysis Core will computationally define and characterize transcriptomic and epigenomic signatures
of cellular senescence in murine brain, bone marrow, colon, breast and liver cell types from healthy male and
female young and old mice. We will use established, scalable pipelines to process data generated by the
Biological Analysis Core and create an integrated map of brain, bone marrow, colon, breast and liver cell types
using cellular profiles derived from all single cell sequencing and imaging assays together. Using this integrated
map, we will identify populations of senescent cells within each tissue-resident cell type based on gene
expression and epigenomic profiles of known cellular senescence markers, and define both heterogeneous sub-
types of senescent cells as well as ‘senescent-like’ cells with non-canonical profiles. For each senescent and
senescent-like sub-type, we will define its cis-regulatory programs including candidate cis-regulatory elements
(cCREs), chromatin states, transcriptional regulators and target genes of cCRE activity (i.e., gene enhancer –
promoter networks), as well as their spatial orientation and micro-environment. We will characterize changes in
the abundance and cis-regulation of senescent and senescent-like cell sub-types as well as cell types in the
senescent niche across life span and linked to sex, cell type and tissue region. This integrated transcriptomic
and epigenomic map of senescent cells will define and resolve senescent cells better than transcriptome alone.
We will evaluate the effects of genetic and pharmacologic clearance of senescent cells and anti-inflammatory
senomorphics. We will establish a pipeline to determine epigenetic age of single senescent cells based on their
DNA methylation profile, a candidate predictor of beneficial versus detrimental senescent cells. Throughout the
project we will work closely with the UCSD Center for Epigenomics and the Biological Analysis Core of this
project to track data quality, link study design to downstream analyses by incorporating batch and other technical
covariates, inform selection of targets for validation studies, and organize meta-data and associated data for all
experiments. Finally, we will create a meta-data repository based on open-source software employed by our
group in other large-scale projects to organize all raw and processed data, provide integrated results files,
processing pipelines and analytical tools used by the project, and ensure all project data is FAIR, interoperable
and adheres to community standard formats. Using this repository, we will transfer project data to the Consortium
Organization and Data Coordination Center (CODCC) and collaborate with other groups in the consortium to
share data and resources.
项目摘要
数据分析核心将在计算上定义和表征转录组和表观基因组特征
来自健康男性和
雌性和老鼠。我们将使用已建立的可扩展管道来处理由
生物分析核心并创建大脑,骨髓,结肠,乳房和肝细胞类型的集成图
使用从所有单细胞测序和成像测定中得出的细胞谱。使用此集成
地图,我们将根据基因确定每种组织居民细胞类型中的感觉细胞的种群
已知细胞感应标记的表达和表观基因组谱,并定义两个异质亚
感觉细胞的类型以及具有非规范曲线的“感觉样”细胞。对于每个感觉和
类似于感觉的子类型,我们将定义其顺式调节程序,包括候选顺序调节元件
(CCRES),染色质状态,转录调节剂和CCRE活性的靶基因(即基因增强子 -
启动子网络)及其空间取向和微环境。我们将表征更改
感觉和感觉样细胞亚型的抽象和顺式调节以及细胞类型
跨寿命的感觉小众,与性别,细胞类型和组织区域相关。这个集成的转录组
与单独的转录组相比,感觉细胞的表观基因组图将更好地定义和解决感觉细胞。
我们将评估感觉细胞和抗炎的遗传和药物清除的影响
鼻象。我们将建立一条管道,以确定单个感觉细胞的表观遗传年龄
DNA甲基化曲线,有益与有害感觉细胞的候选预测指标。整个
项目我们将与UCSD表观基因组学中心紧密合作,并将其生物分析核心
通过编码批次和其他技术来跟踪数据质量,链接研究设计与下游分析的项目
协变量,为验证研究的目标选择,并组织所有人的元数据和相关数据
实验。最后,我们将根据我们的开源软件创建一个元数据存储库
其他大规模项目中的组以组织所有原始数据和处理的数据,提供集成的结果文件,
处理项目使用的管道和分析工具,并确保所有项目数据都是公平的,可互操作的
并遵守社区标准格式。使用此存储库,我们将将项目数据传输到财团
组织和数据协调中心(CODCC),并与财团中的其他团体合作
共享数据和资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bing Ren其他文献
Bing Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bing Ren', 18)}}的其他基金
Broadly Accessible Technologies for Single-cell Joint Analysis of Transcriptome and Epigenome
转录组和表观基因组单细胞联合分析的广泛可用技术
- 批准号:
10383385 - 财政年份:2022
- 资助金额:
$ 57.73万 - 项目类别:
Comparative Single-Cell Epigenomic Analysis of AD-like Pathogenesis in Unconventional Animal Models
非常规动物模型中 AD 样发病机制的比较单细胞表观基因组分析
- 批准号:
10682624 - 财政年份:2021
- 资助金额:
$ 57.73万 - 项目类别:
High throughput CRISPR-mediated functional validation of regulatory elements
高通量 CRISPR 介导的调控元件功能验证
- 批准号:
10240102 - 财政年份:2021
- 资助金额:
$ 57.73万 - 项目类别:
High-throughput Single Cell Co-assay of Histone Modifications and Transcriptome
组蛋白修饰和转录组的高通量单细胞联合测定
- 批准号:
10324108 - 财政年份:2021
- 资助金额:
$ 57.73万 - 项目类别:
Epigenomic analysis of neural circuits in Alzheimer's disease mouse models
阿尔茨海默病小鼠模型神经回路的表观基因组分析
- 批准号:
10615701 - 财政年份:2020
- 资助金额:
$ 57.73万 - 项目类别:
Single-Cell Analysis of Aging-Associated 4D Nucleome in the Human Hippocampus
人类海马中与衰老相关的 4D 核组的单细胞分析
- 批准号:
10687008 - 财政年份:2020
- 资助金额:
$ 57.73万 - 项目类别:
High throughput CRISPR-mediated functional validation of regulatory elements
高通量 CRISPR 介导的调控元件功能验证
- 批准号:
9247463 - 财政年份:2017
- 资助金额:
$ 57.73万 - 项目类别:
High throughput CRISPR-mediated functional validation of regulatory elements
高通量 CRISPR 介导的调控元件功能验证
- 批准号:
9420657 - 财政年份:2017
- 资助金额:
$ 57.73万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 57.73万 - 项目类别:
Microglial process convergence following brain injury
脑损伤后小胶质细胞过程收敛
- 批准号:
10657968 - 财政年份:2023
- 资助金额:
$ 57.73万 - 项目类别:
Whole Transcriptome Studies of Blood to Predict Stroke Outcome
预测中风结果的血液全转录组研究
- 批准号:
10655229 - 财政年份:2023
- 资助金额:
$ 57.73万 - 项目类别:
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
- 批准号:
10418459 - 财政年份:2022
- 资助金额:
$ 57.73万 - 项目类别: