AI-Based Identification of Rapid Glaucoma Progression to Guide Clinical Management and Accelerate Clinical Trials

基于人工智能的青光眼快速进展识别,指导临床管理并加速临床试验

基本信息

  • 批准号:
    10553060
  • 负责人:
  • 金额:
    $ 23.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-30 至 2024-09-29
  • 项目状态:
    已结题

项目摘要

Project Summary Glaucoma is the leading cause of irreversible blindness worldwide and is expected to affect more than 110 million people worldwide within the next two decades. It is a degenerative disease that has a large impact both in terms of patient quality of life and in costs to the healthcare system. A critical need in glaucoma clinical management and research is the ability to accurately identify patients likely to undergo rapid disease progression (i.e., lose visual function quickly). Currently, estimating the rate of progression for a patient requires several follow-up visits over the course of multiple years. This delay in identifying progression leads to lost vision and increases the cost of care. It also impacts clinical trials in glaucoma, increasing the time and cost needed to investigate novel therapies for the disease. The goal of this Phase I STTR proposal is to use artificial intelligence techniques to improve the accuracy and shorten the time for identifying raid progression in glaucoma. The primary outcome of our Phase I proposal will enable an AI-based tool to identify rapid glaucomatous progression and will be immediately ready for use in Phase 1/2a clinical trials as FDA approval is not required. Specifically, we will (1) use longitudinal optical coherence tomography (OCT) imaging and visual field (VF) testing dataset to train AI models to identify rapidly progressing glaucoma patients and (2) incorporate patient data, clinical measurements, and treatment history into the AI models to further improve performance. AI models will be trained and evaluated on a combination of research and real-world clinical data. These datasets include tens of thousands of images, VF tests, and clinical records collected from a diverse cohort of more than 9,000 glaucoma patients over the course of more than a decade. These datasets provide us with a unique opportunity to not only train AI models, but also to characterize model performance as a function of patient demographics, clinical covariates, disease severity, and follow-up length – providing critical context to help clinicians better understand model predictions. Accurate and early predictions would be of great benefit to both clinical management and clinical trials in glaucoma. Improved outcomes, reduced patient care and drug development costs, and faster development of glaucoma therapeutics make tools that quickly identify progressors an attractive product for our target customers, pharmaceutical companies and eye care specialists.
项目摘要 青光眼是全球不可逆失明的主要原因,预计会影响超过1.1亿 在接下来的二十年中,全球人是一种退化性疾病 患者的生活质量和医疗保健系统的成本。 研究是能够准确识别可能造成快速疾病进展的患者的能力(即失去,失败 目前的视觉功能很快,估计患者的进度率 在多年的过程中 护理也影响了青光眼的临床试验,增加了研究的时间和成本 疾病的目标是使用人工智能技术 改善识别青光眼进展的时间。 我们的I阶段建议使用启用基于AI的工具来识别快速的青光眼进展,并将是 立即准备在第1阶段/2A临床试验中使用,因为不需要FDA批准。 明天使用纵向光学连贯性(OCT)成像和视野(VF)测试数据集训练AI 识别快速发展的青光眼患者的模型,(2)结合患者数据,临床测量, 和治疗历史记录到Amodels,以进一步提高性能。 关于研究和现实世界数据的组合。 VF测试以及从多种多样的9,000名青光眼患者中收集的临床记录。 十多年的过程。这些数据集为我们提供了一个独特的机会 但也将模型性能描述为患者人口统计学,临床协变量,疾病的函数 严重性和随访长度的关键环境,以帮助临床医生更好地了解模型预测。 准确和早期的预测将对临床管理和临床方面有很大的好处 青光眼。 青光眼治疗剂制造工具,可以迅速识别出对我们目标客户的有吸引力的产品, 制药公司和眼保健专家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Tafreshi其他文献

Ali Tafreshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于年龄和空间的非随机混合对性传播感染影响的建模与研究
  • 批准号:
    12301629
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
  • 批准号:
    82373667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
  • 批准号:
    82304205
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
  • 批准号:
    10525098
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了