Structural basis of KATP channel gating
KATP通道门控的结构基础
基本信息
- 批准号:10549857
- 负责人:
- 金额:$ 43.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-07 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:ATP-Binding Cassette TransportersAffectAntidiabetic DrugsBindingBiochemicalBiogenesisBlood VesselsBrainCRSP3 geneCarbamazepineCellsCellular Metabolic ProcessChemicalsComplexCryoelectron MicroscopyDataDefectDetergentsDevelopmental Delay DisordersDimerizationDiseaseDistalDrug DesignEpilepsyFunctional disorderFundingGenesGenetic PolymorphismGlucoseGlyburideGoalsGrantHealthHeartHormone secretionHumanHypoglycemiaImpairmentIon ChannelKnowledgeLeadLigandsMediatingMembraneMembrane ProteinsMethodsMgADPMgATPMolecularMolecular ChaperonesMonitorMutationN-terminalNon-Insulin-Dependent Diabetes MellitusNucleotidesOutcomePersistent Hyperinsulinemia Hypoglycemia of InfancyPharmaceutical PreparationsPhosphatidylinositol 4,5-DiphosphatePhysiologicalPositioning AttributePotassiumPotassium ChannelPublishingRegulationResolutionReview LiteratureRiskStructureStructure of beta Cell of isletStructure-Activity RelationshipSurfaceSyndromeTestingTherapeuticTransmembrane Domainbiochemical toolsbiophysical toolsconformational conversioncrosslinkdesigngain of function mutationglucose metabolismhormone regulationhuman diseaseimprovedinhibitorinnovationinsulin secretioninward rectifier potassium channelischemic injuryloss of function mutationmolecular dynamicsmutantnanodiskneonatal diabetes mellitusnovelparticlepharmacologicpreservationprotein complexreconstitutionrepaglinidesulfonylurea receptortrafficking
项目摘要
PROJECT SUMMARY
ATP-sensitive potassium (KATP) channels couple cell metabolism to membrane excitability and are critical for many
physiological functions. They are unique membrane protein complexes formed by four inwardly rectifying K+
channel (Kir6.1 or Kir6.2) subunits and four sulfonylurea receptor (SUR1 or SUR2) subunits. This grant is focused
on KATP channels consisting of Kir6.2 and SUR1, which have a key role in glucose-stimulated insulin secretion in
pancreatic β-cells. Loss-of-function mutations in these channels cause congenital hyperinsulinism and
hypoglycemia, whereas gain-of-function mutations cause neonatal diabetes and in severe cases DEND
(Developmental delay, Epilepsy, and Neonatal Diabetes) syndrome. In addition, KATP gene polymorphisms
increase risk for type 2 diabetes. Our long-term goal is to understand the structure-function relationship of
KATP channels in order to develop mechanism-based therapies for disease caused by KATP dysfunction.
Over the past three funding cycles, we have made significant progress towards this goal. Most particularly,
using single-particle cryo-electron microscopy (cryoEM) we recently obtained high-resolution structures of the
channel bound with the physiological inhibitor ATP and the anti-diabetic drug glibenclamide (glyburide). This
opened a new chapter for the field, enabling us to understand the structural basis of KATP channel assembly and
gating in health and disease, at near atomic detail and in the context of full channel structure. Our group is
uniquely positioned to help lead this effort by integrating our cryoEM capability with the extensive molecular,
biochemical, and biophysical tools and knowledge we have amassed over the course of this grant. In this renewal
application, we propose to tackle the most important yet challenging problems remaining in the field. Our
overarching hypothesis is that SUR1 assembles with and regulates the function of Kir6.2 through specific
structural interactions that are regulated by physiological and pharmacological ligands. We will use a
combination of structural, molecular dynamics simulation and functional approaches to test the hypothesis in
three interwoven but independent Specific Aims. (1) Elucidate KATP channel assembly mechanisms guided by
our cryoEM structures. (2) Identify and monitor interactions between SUR1, Kir6.2, and ligands that are critical for
channel opening and closure to understand the structural mechanisms governing channel gating. (3) Determine
open state structures of KATP channels by cryoEM to understand the conformational transition during gating. The
proposal has a strong scientific premise built on our rigorous preliminary and published studies as well as a
careful review of the literature. The proposal is innovative as it will generate new structures and test conceptually
novel mechanistic hypotheses on channel gating and assembly emanated from the recent cryoEM structures.
Successful outcome will have significant impact on advancing our structural knowledge of channel regulation to
facilitate mechanistic drug design for disease caused by KATP channel dysfunction. Further, the outcome will have
broad implications for many other ABC transporters and ion channels important for human health.
项目摘要
ATP敏感钾(KATP)通道将细胞代谢夫妇与膜相对
它们是由四个内部整流K ++形成的独特的膜蛋白复合物
通道(Kir6.1或Kir6.2)亚基和四个磺酰脲受体(SUR1或SUR2)亚基。
在由KIR6.2和SUR1组成的KATP通道上,它们在葡萄糖刺激的胰岛素分泌中具有关键作用
胰腺β细胞。
低血糖,而功能收益突变会导致新生儿糖尿病,在严重的情况下导致
(发育延迟,癫痫和新生儿糖尿病)此外,KATP基因多态性
增加2型糖尿病的风险。
KATP通道以开发基于机制的KATP功能障碍引起的疾病疗法。
在过去的树木资金周期中,我们已经朝着这个目标取得了重大进步。
使用单粒子冷冻电子显微镜(冷冻)我们最近获得了高分辨率结构
与生理抑制剂ATP和抗糖尿病药物(Glibenbelide)结合的通道
为该领域开了一个新的篇章,使我们能够理解Katp Channel sistorty Andly的结构基础
健康和疾病的门控,几乎是原子的细节和完整的渠道结构
通过将我们的冷冻可粘性与广泛的分子融合在一起,以帮助实现这一EFFOS的独特位置
生物化学和生物物理工具和知识在这项续签的过程中积累了
应用,我们建议解决该领域剩下的最重要但最具挑战性的问题。
总体假设是SUR1通过特定而与Kir6.2的功能组装并调节功能
通过生理和药物配体进行的结构相互作用。
结构,分子动力学模拟和功能方法的结合,以检验假设
三个交织但独立的特定目的。
我们的冷冻结构。
通道打开和闭合,以了解控制通道门控的结构机制
katp渠道的开放状态结构通过冷冻渠道了解
提案具有强大的科学前提,基于我们严格的初步和发表的研究
对文献的仔细审查是创新的,因为它将生成新的结构
最近的冷冻结构散发出关于通道门控和组装的新型机械假设。
成功的结果将对推进我们对渠道调节的结构知识产生重大影响
促进由KATP通道功能障碍引起的疾病的机械药物设计。
对许多其他ABC转运蛋白和离子渠道对人类健康很重要的含义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Show-Ling Shyng其他文献
Show-Ling Shyng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Show-Ling Shyng', 18)}}的其他基金
Correlating structure and function in KATP channel isoforms
KATP 通道亚型的结构和功能相关
- 批准号:
10629412 - 财政年份:2022
- 资助金额:
$ 43.82万 - 项目类别:
Correlating structure and function in KATP channel isoforms
KATP 通道亚型的结构和功能相关
- 批准号:
10767078 - 财政年份:2022
- 资助金额:
$ 43.82万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 43.82万 - 项目类别:
MTI-301 a SCD1 inhibitor for the treatment of NASH
MTI-301 一种 SCD1 抑制剂,用于治疗 NASH
- 批准号:
10693638 - 财政年份:2023
- 资助金额:
$ 43.82万 - 项目类别:
Deciphering the Role of AMPK in Doxorubicin Cardiotoxicity
解读 AMPK 在阿霉素心脏毒性中的作用
- 批准号:
10580326 - 财政年份:2023
- 资助金额:
$ 43.82万 - 项目类别:
Bioenergetic impairment in Group 3 pulmonary hypertension
第 3 组肺动脉高压的生物能损伤
- 批准号:
10740337 - 财政年份:2023
- 资助金额:
$ 43.82万 - 项目类别:
Evaluating the role of multimorbidity in modulation medication effects in older adults
评估多种疾病在调节老年人药物作用中的作用
- 批准号:
10586349 - 财政年份:2023
- 资助金额:
$ 43.82万 - 项目类别: