SAFEGENOMES: Strong privacy Assurance For Effective GENOME Sharing
SAFEGENOMES:强大的隐私保证,有效实现基因组共享
基本信息
- 批准号:10551263
- 负责人:
- 金额:$ 24.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-14 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAppointmentBiomedical ResearchCollaborationsComplementComputational BiologyDataData AnalyticsData CollectionData CorrelationsData ProtectionData ReportingDatabasesDevelopment PlansDisclosureEnsureEquilibriumExcisionEyeFacultyGenderGenomeGenomic medicineGenomicsGenotypeGoalsHair ColorHealthHealth PromotionHumanIndividualInstitutionKnowledgeMedical ResearchMethodsMissionModelingNational Human Genome Research InstituteNoiseOutcomeParticipantPhasePhenotypePoliciesPrivacyPrivatizationPublicationsPublishingRecordsReproducibilityResearchResearch PersonnelRiskSamplingTechniquesTechnologyTraining ActivityTrustUncertaintyUniversitiesVariantWorkY Chromosomebiomedical informaticsburden of illnesscareercareer developmentcomputer sciencecryptographydata accessdata anonymizationdata de-identificationdata preservationdata privacydata reductiondata sharingdesignexperienceflexibilitygenetic variantgenome wide association studygenomic dataimprovedpersonalized medicineprecision medicinepreventprivacy preservationprivacy protectionprogramsskillsstatisticsusability
项目摘要
Project Summary
Genomic data are vital for advancing medical research and achieving breakthroughs. However, disclosure of
genomic data has serious privacy implications that can lead to a loss of trust from data contributors and restricting
researchers’ access to data. To facilitate data-driven genomic research, it is crucial to address the privacy risks
in data sharing and to develop privacy-preserving solutions to protect study participants. This project will study
the privacy risks in realistic attack models and develop privacy methods that balance individual privacy and the
utility of shared data. Overall, the proposed solutions will enable institutions to share high utility data while
providing strong privacy assurance to data contributors, facilitating data collection and improving data usability.
In the first aim, a privacy-preserving data publication framework will be developed to “safely anonymize” genomic
data and optimize the released data toward application needs. The framework will protect individuals from re-
identification and also prevent inference attacks that may be conducted using publicly available phenotypes (e.g.,
eye/hair color). In the second aim, customizable privacy solutions will be developed against realistic adversarial
models when data statistics are released. Building on recent privacy models, the proposed solutions will account
for the adversary's external knowledge and customizable sensitive information to effectively strike a balance
between privacy and utility, improving data usability compared to standard differential privacy models. This
project will advance current solutions for genomic data anonymization and improve the usability of differential
privacy and its variants, with the goal of facilitating highly usable and privacy-preserving data sharing. This work
will widen the access to genomic data, promote transparency, and facilitate reproducibility for genomic
applications. This project is in line with the mission of the National Human Genome Research Institute (NHGRI),
as the proposed techniques enhance data sharing and promote collaborative genomic research.
The applicant’s career goal is to become an independent investigator with a primary appointment in a biomedical
informatics program, with a focus on genome privacy technologies, at a major US research university. His long-
term objective is to develop new privacy-preserving technologies for data sharing and data analytics, in order to
facilitate collaborative research efforts in genomics and precision medicine. The applicant proposes a carefully
designed career development plan, which includes a variety of training activities to complement his computer
science skills with additional biomedical knowledge and smooth his transition into an independent researcher.
The UCSD Health Department of Biomedical Informatics will serve as an exceptional platform for his career
development, given the experience of several faculty in privacy technologies, computational biology, genomic
medicine, and close collaboration with other institutions worldwide.
项目概要
基因组数据对于推进医学研究和实现突破至关重要。
基因组数据具有严重的隐私影响,可能导致数据贡献者失去信任并限制
为了促进数据驱动的基因组研究,解决隐私风险至关重要。
数据共享并开发隐私保护解决方案来保护研究。
现实攻击模型中的隐私风险,并开发平衡个人隐私和
总体而言,所提出的解决方案将使机构能够共享高效用数据。
为数据贡献者提供强有力的隐私保证,促进数据收集并提高数据可用性。
第一个目标是开发一个保护隐私的数据发布框架,以“安全地匿名”基因组
数据并根据应用程序需求优化发布的数据,该框架将保护个人免遭重新发布。
识别并防止可能使用公开可用的表型进行的推理攻击(例如,
第二个目标是针对现实的对抗开发可定制的隐私解决方案。
数据统计发布时的模型 基于最近的隐私模型,提出的解决方案将考虑在内。
为对手的外部知识和可定制的敏感信息有效地取得平衡
隐私和实用性之间的平衡,与标准差分隐私模型相比,提高了数据可用性。
该项目将推进当前基因组数据匿名化的解决方案,并提高差异化的可用性
隐私及其变体,旨在促进高度可用且保护隐私的数据共享。
将扩大基因组数据的获取范围,提高透明度并促进基因组的可重复性
该项目符合国家人类基因组研究所(NHGRI)的使命,
因为所提出的技术增强了数据共享并促进了协作基因组研究。
申请人的职业目标是成为一名独立调查员,并在生物医学领域担任主要职务
他在美国一所主要研究型大学从事信息学项目,重点关注基因组隐私技术。
长期目标是开发用于数据共享和数据分析的新隐私保护技术,以便
促进基因组学和精准医学方面的合作研究工作申请人提出了谨慎的建议。
设计职业发展计划,其中包括各种培训活动以补充他的计算机
科学技能和额外的生物医学知识,并顺利过渡为独立研究员。
加州大学圣地亚哥分校健康生物医学信息学系将为他的职业生涯提供一个特殊的平台
鉴于隐私技术、计算生物学、基因组学方面的几位教师的经验,开发
医学,以及与世界各地其他机构的密切合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Bonomi其他文献
Luca Bonomi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Bonomi', 18)}}的其他基金
SAFEGENOMES: Strong privacy Assurance For Effective GENOME Sharing
SAFEGENOMES:强大的隐私保证,有效实现基因组共享
- 批准号:
10532442 - 财政年份:2022
- 资助金额:
$ 24.8万 - 项目类别:
SAFEGENOMES: Strong privacy Assurance For Effective GENOME Sharing
SAFEGENOMES:强大的隐私保证,有效实现基因组共享
- 批准号:
9919609 - 财政年份:2019
- 资助金额:
$ 24.8万 - 项目类别:
相似国自然基金
面向集卡预约环境的港口集疏运道路作业计划与管控方法
- 批准号:52372303
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向一站式预约的门诊患者多检查动态调度优化研究
- 批准号:72371200
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于集卡预约扰动致因解构的港口集疏运通道空间尺度优化研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑患者等待时长的医疗系统预约调度研究:基于近似动态规划的方法
- 批准号:72272027
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
数据驱动下港口集卡预约系统的预约配额方案优化与失约车辆再预约策略研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetic and social determinants of pharmacological health outcomes in ancestrally diverse populations
祖先不同人群药理健康结果的遗传和社会决定因素
- 批准号:
10578117 - 财政年份:2023
- 资助金额:
$ 24.8万 - 项目类别:
Expanding Excellence in Developmental Biology in Oklahoma
扩大俄克拉荷马州发育生物学的卓越水平
- 批准号:
10629614 - 财政年份:2023
- 资助金额:
$ 24.8万 - 项目类别:
The Medical District UTSW-D FIRST Program
医疗区 UTSW-D FIRST 计划
- 批准号:
10663764 - 财政年份:2023
- 资助金额:
$ 24.8万 - 项目类别:
UKNeu-PREP: University of Kentucky Neuroscience Postbaccalaureate Research Education Program
UKNeu-PREP:肯塔基大学神经科学学士后研究教育计划
- 批准号:
10611739 - 财政年份:2023
- 资助金额:
$ 24.8万 - 项目类别: