Wrestling stress: role of ufm1 modification in pathological cardiac remodeling
摔跤应激:ufm1 修饰在病理性心脏重塑中的作用
基本信息
- 批准号:10543533
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAgingAnimalsBindingBinding ProteinsBiochemicalBiological ProcessCardiacCardiac MyocytesCardiomyopathiesCell physiologyCessation of lifeDataDevelopmentDilated CardiomyopathyDimerizationDiseaseEmbryoEmbryonic DevelopmentEndoplasmic ReticulumEnzymesEventFibroblastsFoundationsFunctional disorderGenetic PolymorphismGenetically Engineered MouseGoalsHeartHeart DiseasesHeart failureHematopoiesisHomeostasisHospitalizationHumanInterventionKnowledgeLigaseMediatingModelingModificationMolecularMolecular TargetMusMyocardial dysfunctionPathogenesisPathogenicityPathologicPhysiologicalPilot ProjectsPost-Translational Protein ProcessingProteinsPublishingRNA SplicingRegulationReportingRepressionResearchRestRoleSignal TransductionStressStress Response SignalingTestingTimeTransducersUbiquitinUbiquitin Like ProteinsUbiquitinationWrestlingXBP1 geneattenuationbasebiological adaptation to stresscardioprotectioncell injuryclinical practicecombatendoplasmic reticulum stressheart functionhemodynamicshuman diseasein vivointestinal homeostasisloss of function mutationneuron developmentnovelpharmacologicpressurepreventresponserestorationtherapeutically effectivetooltranscriptomics
项目摘要
PROJECT SUMMARY
Protein post-translational modifications by ubiquitin and ubiquitin-like proteins represent vital mechanisms
regulating protein quality and function that are integral to cardiomyocyte function and homeostasis. The overall
goal of this proposal is to determine the function and underlying mechanism of a novel ubiquitin-like protein,
Ubiquitin-fold modifier 1 (Ufm1), in the heart. Ufmylation covalently conjugates Ufm1 to target substrates via a
Ufm1-specific E1 (Uba5)-E2 (Ufc1)-E3 (Ufl1) cascade. Through regulating the function of cellular proteins,
ufmylation controls multiple cellular processes and physiological events, and have been implicated in a number
of human diseases. Our pilot studies have for the first time identified a critical role for ufmylation in constraining
pathological cardiac remodeling and provided novel mechanistic linkages between ufmylation and endoplasmic
reticulum (ER) stress response. Ufmylation is dysregulated in cardiomyopathic hearts. Inhibition of ufmylation
via targeted ablation of the E3 Ufm1 ligase 1 (Ufl1) in the heart caused cardiomyopathy during ageing and
promoted propensity to heart failure in response to hemodynamic stress. ER stress coincided with the
progression of cardiomyopathy in these mice, and pharmacological attenuation of ER stress ameliorated cardiac
dysfunction following pressure overload in Ufl1-deficient hearts. Furthermore, Ufl1 controls the expression of
Ufm1 binding protein 1 (Ufbp1), an ER-resident Ufm1 target. Depletion of Ufbp1 diminished Xbp-1 splicing,
blunted Xbp-1s signaling and aggravated ER stress-induced cell injury, recapitulating most aspects of Ufl1
depletion. Moreover, ER stress promotes the binding of Ufbp1 to IRE1α, a key ER stress transducer that
activates cardioprotective Xbp-1s signaling. These data collectively suggest that Ufbp1 acts downstream of Ufl1
to protect CMs against pathogenic insults and is a crucial regulator of IRE1a/Xbp-1s signaling in cardiomyocytes.
Therefore, this proposal is to test the hypothesis that ufmylation protects against pathological cardiac remodeling
by targeting Ufbp1 to activate the adaptive ER stress response in cardiomyocytes. To test this hypothesis, Aim
1 will define the pathophysiological roles of Ufbp1 in the heart; Aim 2 will identify molecular bases of how
ufmylation activates the adaptive ER stress response signaling in cardiomyocytes; Aim 3 will elucidate the
functional importance of Ufbp1 ufmylation in activating IRE1a/Xbp-1s signaling and limiting cellular damage in
response to stress. The proposed study is the first to target protein ufmylation in a model of cardiac failure and
will employ unique tools including three new genetically-engineered mouse models to provide translational
significance. Completion of this project will establish a novel role of post-translational modification (ufmylation)
in the regulation of cardiac function and suggest new molecular targets for exploitation in the treatment of heart
disease.
项目摘要
蛋白质后泛素和泛素样蛋白的翻译后修饰代表了重要机制
调节蛋白质质量和功能是心肌细胞功能和稳态不可或缺的。总体
该建议的目标是确定一种新型泛素样蛋白的功能和潜在机制,即
心脏中的泛素折叠1(UFM1)。 ufmylation将UFM1共价结合到靶基板通过A
UFM1特异性E1(UBA5)-E2(UFC1)-e3(UFL1)级联。通过调节细胞蛋白的功能,
ufmylation控制多个蜂窝过程和物理事件,并与一个数字有关
人类疾病。我们的试点研究首次确定了ufmylation在限制中的关键作用
病理心脏重塑,并在ufmylation和内质之间提供了新的机械联系
网状(ER)应力反应。在心肌疗法心脏中,ufmylation失调。抑制ufmylation
通过对心脏中E3 UFM1连接酶1(UFL1)的靶向消融导致衰老期间的心肌病变
促进了响应血液动力学胁迫的心力衰竭的希望。 ER应力与
这些小鼠心肌病的进展,以及ER应力的药物衰减改善心脏
UFL1缺陷心脏中压力超负荷后的功能障碍。此外,UFL1控制着
UFM1结合蛋白1(UFBP1),一个ER居民UFM1靶标。 UFBP1的耗竭减少XBP-1剪接,
钝的XBP-1S信号传导和汇总的ER应力诱导的细胞损伤,概括了UFL1的大多数方面
消耗。此外,ER应力促进了UFBP1与IRE1α的结合,IRE1α是一种关键的ER应力传感器
激活心脏保护性XBP-1S信号。这些数据集体表明UFBP1在UFL1的下游作用
保护CMS免受致病性损伤,是心肌细胞中IRE1A/XBP-1S信号传导的关键调节剂。
因此,该提议是为了检验ufmylation预防病理心脏重塑的假设
通过靶向UFBP1激活心肌细胞中的自适应ER应激反应。为了检验这一假设,目标
1将定义UFBP1在心脏中的病理生理作用; AIM 2将确定分子基础
ufmylation激活心肌细胞中的自适应ER应力反应信号传导; AIM 3将阐明
UFBP1 ufmylation在激活IRE1A/XBP-1S信号传导中的功能重要性和限制细胞损伤
对压力的反应。拟议的研究是第一个在心脏衰竭模型和
将采用独特的工具,包括三种新的基因工程鼠标模型来提供翻译
意义。该项目的完成将建立翻译后修饰的新作用(ufmylation)
在心脏功能的调节中,并提出了用于治疗心脏的新分子靶标
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Li其他文献
Jie Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Li', 18)}}的其他基金
Accessing and Expanding Natural Products Chemical Diversity by Big-data Analysis and Biosynthetic Investigation
通过大数据分析和生物合成研究获取和扩大天然产物化学多样性
- 批准号:
10714466 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Gut microbial metabolites sulfonolipids mediate high fat diet-induced intestinal inflammation
肠道微生物代谢物磺脂介导高脂肪饮食引起的肠道炎症
- 批准号:
10531456 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
Wrestling stress: role of ufm1 modification in pathological cardiac remodeling
摔跤应激:ufm1 修饰在病理性心脏重塑中的作用
- 批准号:
9887887 - 财政年份:2020
- 资助金额:
$ 38.5万 - 项目类别:
Wrestling stress: role of ufm1 modification in pathological cardiac remodeling
摔跤应激:ufm1 修饰在病理性心脏重塑中的作用
- 批准号:
10331005 - 财政年份:2020
- 资助金额:
$ 38.5万 - 项目类别:
Gut microbial metabolites sulfonolipids mediate high fat diet-induced intestinal inflammation
肠道微生物代谢物磺脂介导高脂肪饮食引起的肠道炎症
- 批准号:
10534725 - 财政年份:2012
- 资助金额:
$ 38.5万 - 项目类别:
相似国自然基金
纳米稀土CeO2在土壤-动物体系中的形态转化、累积分布及毒性作用机制
- 批准号:41877500
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
miR-34c在保护高糖诱导的VSMCs早衰并延缓糖尿病血管老化与钙化中的作用及机制
- 批准号:81770833
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
缝隙连接蛋白26在老年性耳聋中的表达及其甲基化作用机制研究
- 批准号:81500795
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
研究细胞/组织器官衰老与机体衰老关联机制的条件性敲入小鼠模型的建立与分析
- 批准号:81571374
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
改善年龄老化导致下肢新生血管生成障碍的实验研究
- 批准号:81070257
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Molecular and functional characterization of type I and II vestibular hair cells in adult mice
成年小鼠 I 型和 II 型前庭毛细胞的分子和功能特征
- 批准号:
10749188 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Vitamin D and beta-amyloid signaling in hyperparathyroidism
甲状旁腺功能亢进症中的维生素 D 和 β-淀粉样蛋白信号传导
- 批准号:
10668177 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别: