Enhancing Engagement with Digital Mental Health Care
加强数字心理保健的参与
基本信息
- 批准号:10543165
- 负责人:
- 金额:$ 76.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-24 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:10 year oldAddressAdvocacyAgeBehaviorCaringCategoriesCharacteristicsClassificationClientClinicalCodeCommunicationDataDetectionDiagnosisDiseaseDoseDropoutEffectivenessEngineeringEnrollmentEthnic OriginFocus GroupsFrequenciesFutureGenderGoalsHealthHealth behavior changeHourIncomeInformaticsIntakeInvestmentsLanguageLearningLengthLongevityMachine LearningMaintenanceMarketingMeasuresMediatingMental HealthMental Health ServicesMethodsModelingMotivationMovementNatural Language ProcessingOutcomeOutcome MeasureParticipantPatient RecruitmentsPatient Self-ReportPatternPersonal SatisfactionPopulationProcessProviderPsychotherapyRandomizedRecoveryResearchResourcesRiskSamplingSelf EfficacySequential Multiple Assignment Randomized TrialSeriesServicesSeveritiesSurveysSymptomsTechniquesTechnologyTestingTextTimeUniversitiesVisitVolitionWashingtonWell in selfWorkbasebehavior changebehavior predictioncomorbiditycomputer sciencecopingdemographicsdesigndigitaldigital mental healtheffectiveness studyeffectiveness testingexpectationfallshealth goalsimprovedmachine learning methodmedical schoolsoutcome predictionpersonalized strategiespredictive markerpreventprogramsprospectivepsychoeducationpsychoeducationalrandomized trialrandomized, clinical trialsresponsesatisfactionscreeningself helpskillssuccesssupervised learningtheoriestooltrial designuser centered designweb appweb page
项目摘要
Enhancing Engagement with Digital Mental Health Care
Abstract
Digital mental health (DMH) is the use of technology to improve population well-being through rapid disease
detection, outcome measurement, and care 1. Although several randomized clinical trials have demonstrated that
digital mental health tools are highly effective 2-6, most consumers do not sustain their use of these tools 7-9. The
field currently lacks an understanding of DMH tool engagement, how engagement is associated with well-being,
and what practices are effective at sustaining engagement. In this partnership between Mental Health America
(MHA), Talkspace (TS) and the University of Washington (UW), we propose a naturalistic and experimental,
theory-driven program 10,11 of research, with the aim of understanding 1) how consumer engagement in self-help
and clinician assisted DMH varies and what engagement patterns exist, 2) the association between patterns of
engagement and important consumer outcomes, and 3) the effectiveness of personalized strategies for optimal
engagement with DMH treatment. This study will prospectively follow a large, naturalistic sample of MHA and
TS consumers, and will apply machine learning, user-centered design strategies, and micro-randomized and
sequential multiple assignment randomized (SMART) trials to address these aims. As is usual practice for both
platforms, consumers will complete online mental health screening and assessment, and we will be able to
classify participants by disease status and symptom severity. The sample we will be working with will not be
limited by diagnosis or co-morbidities. Participants will be 10 years old and older and enter the MHA and TS
platforms prospectively over 4 years. In order to test the first aim, we will identify a minimum of 100,000
consumers who have accessed MHA and TS platforms in the past. Participant data will be analyzed statistically
to reveal differences in engagement and dropout across groups based on demographics, symptoms and platform
activity. For aim 2, we will use supervised machine learning techniques to identify subtypes based on consumer
demographics, engagement patterns with DMH, reasons for disengagement, success of existing MHA and TS
engagement strategies, and satisfaction with the DMH tools, that are predictive of future engagement patterns.
Finally, based on the outcomes from aim 2, in aim 3 we will conduct focus groups applying user-centered design
strategies to identify and co-build potentially effective engagement strategies for particular client subtypes. We
will then conduct a series of micro-randomized and SMART trials to determine which theory-driven engagement
strategies, co-designed with users, have the greatest fit with subtypes developed under aim 2. We will test the
effectiveness of these strategies to 1) prevent disengagement from those who are more likely to have poor
outcomes after disengagement, 2) improve movement from motivation to volition and, 3) enhance optimal dose
of DMH engagement and consequently improve mental health outcomes. These data will be analyzed using
longitudinal mixed effects models with effect coding to estimate the effectiveness of each strategy on client
engagement behavior and mental health outcomes.
加强数字心理保健的参与
抽象的
数字心理健康 (DMH) 是利用技术通过快速疾病改善人群福祉
检测、结果测量和护理 1. 尽管多项随机临床试验表明
数字心理健康工具非常有效 2-6,大多数消费者不会持续使用这些工具 7-9。这
该领域目前缺乏对 DMH 工具参与度、参与度如何与幸福感相关的理解,
以及哪些做法可以有效维持参与。在美国心理健康协会之间的合作中
(MHA)、Talkspace (TS) 和华盛顿大学 (UW),我们提出了一种自然主义和实验性的、
理论驱动的研究计划 10,11,目的是了解 1) 消费者如何参与自助
临床医生协助的 DMH 各不相同,存在哪些参与模式,2) 模式之间的关联
参与度和重要的消费者成果,以及 3) 个性化策略的有效性
参与 DMH 治疗。这项研究将前瞻性地跟踪 MHA 的大量自然样本
TS 消费者,并将应用机器学习、以用户为中心的设计策略以及微随机和
序贯多重分配随机 (SMART) 试验旨在实现这些目标。按照双方的惯例
平台上,消费者将完成在线心理健康筛查和评估,我们将能够
根据疾病状况和症状严重程度对参与者进行分类。我们将使用的样本不会
受诊断或合并症的限制。参与者将年满 10 岁并进入 MHA 和 TS
预计在 4 年内推出平台。为了测试第一个目标,我们将确定至少 100,000
过去访问过 MHA 和 TS 平台的消费者。将对参与者数据进行统计分析
根据人口统计数据、症状和平台揭示不同群体的参与度和退出率差异
活动。对于目标 2,我们将使用监督机器学习技术来根据消费者识别子类型
人口统计数据、DMH 的参与模式、脱离的原因、现有 MHA 和 TS 的成功
参与策略以及对 DMH 工具的满意度,可预测未来的参与模式。
最后,根据目标 2 的结果,在目标 3 中,我们将开展应用以用户为中心的设计的焦点小组
为特定客户子类型识别和共同制定潜在有效的参与策略的策略。我们
然后将进行一系列微观随机和 SMART 试验,以确定哪些理论驱动的参与
与用户共同设计的策略与目标 2 下开发的子类型最适合。我们将测试
这些策略的有效性在于:1)防止脱离那些更有可能陷入贫困的人
脱离后的结果,2) 改善从动机到意志的运动,3) 提高最佳剂量
DMH 参与度,从而改善心理健康结果。这些数据将使用
具有效果编码的纵向混合效果模型,用于估计每种策略对客户的有效性
参与行为和心理健康结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tim ALTHOFF其他文献
Tim ALTHOFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tim ALTHOFF', 18)}}的其他基金
Enhancing Engagement with Digital Mental Health Care
加强数字心理保健的参与
- 批准号:
10321669 - 财政年份:2020
- 资助金额:
$ 76.29万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Childhood socioeconomic disadvantage, cumulative Adverse Childhood Experiences, and adolescent depression and anxiety symptoms
童年社会经济劣势、累积的不良童年经历以及青少年抑郁和焦虑症状
- 批准号:
10676396 - 财政年份:2023
- 资助金额:
$ 76.29万 - 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
- 批准号:
10681998 - 财政年份:2023
- 资助金额:
$ 76.29万 - 项目类别:
Recovery Bridge: A Peer Facilitated Intervention to help bridge the transition from psychiatric inpatient hospitalization to living in the community
康复桥梁:同伴协助干预,帮助弥合从精神病住院到社区生活的过渡
- 批准号:
10637987 - 财政年份:2023
- 资助金额:
$ 76.29万 - 项目类别: