mDOT TR&D3 (Translation): Translation of Temporally Precise mHealth via Efficient and Embeddable Privacy-aware Biomarker Implementations
mDOT TR
基本信息
- 批准号:10541810
- 负责人:
- 金额:$ 28.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureAwarenessBehavioralBiological MarkersCellular PhoneChronic DiseaseClinicCloud ComputingCollaborationsCollectionCommunicationCommunitiesCompanionsComputational TechniqueComputer softwareComputing MethodologiesDataData CollectionDevelopmentDevicesDigital biomarkerDisease OutcomeEatingEnsureFatigueFeedbackFrequenciesGenerationsHealthHealthcareImageIndividualInfrastructureIntelligenceInterventionLeadLifeLife Cycle StagesMachine LearningMedicalMedicineMetadataMethodologyMethodsModalityMotionNoiseObservational StudyOhioParticipantPatientsPersonally Identifiable InformationPhysiologicalPhysiologyPrincipal InvestigatorPrivacyResearchResearch ActivityResearch DesignResearch PersonnelResource-limited settingResourcesRiskRunningSamplingServicesSideSignal TransductionSmokingSoftware DesignStreamStressStructureSystemTechnologyTimeTrainingTranslationsTrustUniversitiesWorkbiopsychosocialcloud platformcravingdata reductiondata sharingdenoisingdesignhealthy lifestylehigh dimensionalityimprovedmHealthmachine learning algorithmmobile computingmultiple chronic conditionsnext generationopen sourcepoint of carepreventprototypepublic health relevanceradio frequencyreconstructionresearch studysensorsignal processingsoftware developmentsynergismtechnological innovationtechnology research and developmenttoolusabilitywearable devicewearable platformwearable sensor technology
项目摘要
Principal Investigator: Kumar, Santosh
TR&D3: Translation of Temporally Precise mHealth via Efficient and Embeddable Privacy-aware
Biomarker Implementations
Lead: Dr. Emre Ertin, The Ohio State University; 10% effort (1.2 CM)
Abstract: The mHealth Center for Discovery, Optimization & Translation of Temporally-Precise Interventions
(the mDOT Center) will enable a new paradigm of temporally-precise medicine to maintain health and manage
the growing burden of chronic diseases. The mDOT Center will develop and disseminate the methods, tools,
and infrastructure necessary for researchers to pursue the discovery, optimization and translation of temporally-
precise mHealth interventions. Such interventions, when dynamically personalized to the moment-to-moment
biopsychosocial-environmental context of each individual, will precipitate a much-needed transformation in
healthcare by enabling patients to initiate and sustain the healthy lifestyle choices necessary for directly
managing, treating, and in some cases even preventing the development of medical conditions. Organized
around three Technology Research & Development (TR&D) projects, mDOT represents a unique national
resource that will develop multiple methodological and technological innovations and support their translation
into research and practice by the mHealth community in the form of easily deployable wearables, apps for
wearables and smartphones, and a companion mHealth cloud system, all open-source.
TR&D3 will develop, validate and disseminate algorithms, tools and software/hardware designs for translation of
temporally-precise mHealth interventions through resource efficient, real time, low-latency and privacy-aware
implementation of an array of digital biomarkers that can be deployed at scale. Our approach is centered around
a hierarchical computing framework that reduces the data into minimal modular abstractions called Micromarkers
computed at the edge devices (Aim 1). Modular Micromarker abstractions are used to compress task-specific
information relevant to biomarker computations at the edge devices while stripping nuisance variables such as
hardware biases/drifts and background levels not pertinent to inference. Our hierarchical computing framework
can be extended to implement high data rate sensor arrays at edge devices to be used at new point of care and
ambulatory settings. This is accomplished through integrating a compressive sensing pre-processor to achieve
signal acquisition in a resource constrained setting (Aim 2). Finally, TR&D3 will create computational
mechanisms and a general biomarker privacy framework to enable participant control over the privacy-utility
trade-offs during study design, data collection, and sharing of collected mHealth data for third party research
when data cross trust domains (Aim 3).
These technologies will be developed in collaboration with collaborative projects and will be disseminated to
service projects to ensure that TR&D3 technologies can solve real problems facing the health research
community and ensure the usability of these technologies by investigators who are external to the mDOT
investigating team. TR&D3 will synergistically work in partnership with the other TR&D projects, the Training and
Dissemination Core, and the Administration Core to maximize the societal impact of TR&D3 technologies.
1
首席研究员:库马尔,桑托什
TR&D3:通过高效且可嵌入的隐私意识实现时间精确的移动医疗
生物标记实施
负责人:Emre Ertin 博士,俄亥俄州立大学; 10% 努力 (1.2 CM)
摘要:移动医疗中心用于发现、优化和转化时间精确干预措施
(mDOT 中心)将实现时间精确医学的新范式,以维持健康和管理
慢性病负担日益加重。 mDOT 中心将开发和传播方法、工具、
以及研究人员追求时间发现、优化和翻译所必需的基础设施
精准的移动医疗干预。当这种干预措施根据时时刻刻进行动态个性化时
每个人的生物心理社会环境背景,将促成急需的转变
通过使患者能够启动并维持直接健康所需的健康生活方式选择来实现医疗保健
管理、治疗,在某些情况下甚至预防疾病的发展。有组织
mDOT 围绕三个技术研发 (TR&D) 项目代表了独特的国家
将开发多种方法和技术创新并支持其翻译的资源
移动医疗社区以易于部署的可穿戴设备、应用程序的形式参与研究和实践
可穿戴设备和智能手机,以及配套的 mHealth 云系统,全部都是开源的。
TR&D3 将开发、验证和传播用于翻译的算法、工具和软件/硬件设计
通过资源高效、实时、低延迟和隐私意识实现时间精确的移动医疗干预
实施一系列可大规模部署的数字生物标记。我们的方法围绕
一种分层计算框架,可将数据简化为称为微标记的最小模块化抽象
在边缘设备上计算(目标 1)。模块化微标记抽象用于压缩特定于任务的
与边缘设备上的生物标记计算相关的信息,同时去除诸如
硬件偏差/漂移和背景水平与推理无关。我们的分层计算框架
可以扩展以在边缘设备上实现高数据速率传感器阵列,以用于新的护理点和
流动设置。这是通过集成压缩传感预处理器来实现的
资源受限环境中的信号采集(目标 2)。最后,TR&D3 将创建计算
机制和通用生物标记隐私框架,使参与者能够控制隐私实用程序
研究设计、数据收集以及为第三方研究共享收集的移动医疗数据期间的权衡
当数据跨信任域时(目标 3)。
这些技术将与合作项目合作开发,并将传播给
确保TR&D3技术能够解决健康研究面临的实际问题的服务项目
社区并确保 mDOT 外部的调查人员可以使用这些技术
调查组。 TR&D3 将与其他 TR&D 项目、培训和
传播核心和管理核心,以最大限度地发挥 TR&D3 技术的社会影响。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emre Ertin其他文献
Emre Ertin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emre Ertin', 18)}}的其他基金
mDOT TR&D3 (Translation): Translation of Temporally Precise mHealth via Efficient and Embeddable Privacy-aware Biomarker Implementations
mDOT TR
- 批准号:
10025134 - 财政年份:
- 资助金额:
$ 28.14万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
- 批准号:12361074
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别: