mDOT TR&D3 (Translation): Translation of Temporally Precise mHealth via Efficient and Embeddable Privacy-aware Biomarker Implementations
mDOT TR
基本信息
- 批准号:10025134
- 负责人:
- 金额:$ 30.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmic SoftwareAlgorithmsArchitectureAwarenessBehavioralBiological MarkersCellular PhoneChronic DiseaseClinicCloud ComputingCollaborationsCollectionCommunicationCommunitiesCompanionsComputational TechniqueComputer softwareComputing MethodologiesDataData CollectionDevelopmentDevicesDisease OutcomeEatingEnsureFatigueFeedbackFrequenciesGenerationsHealthHealthcareImageIndividualInfrastructureIntelligenceInterventionLeadLifeMachine LearningMedicalMedicineMetadataMethodologyMethodsModalityMotionNoiseObservational StudyOhioParticipantPatientsPersonally Identifiable InformationPhysiologicalPhysiologyPrincipal InvestigatorPrivacyResearchResearch ActivityResearch DesignResearch PersonnelResourcesRiskRunningSamplingServicesSideSignal TransductionSmokingSoftware DesignStreamStressStructureSystemTechnologyTimeTrainingTranslationsTrustUniversitiesWorkbasebiopsychosocialcloud platformcravingdata anonymizationdata sharingdenoisingdesigndigitalhealth managementhealthy lifestylehigh dimensionalityimprovedmHealthmachine learning algorithmmobile computingmultiple chronic conditionsnext generationopen sourcepoint of carepreventprototypepublic health relevanceradio frequencyreconstructionresearch studysensorsignal processingsoftware developmentsynergismtechnological innovationtechnology research and developmenttoolusabilitywearable sensor technology
项目摘要
Principal Investigator: Kumar, Santosh
TR&D3: Translation of Temporally Precise mHealth via Efficient and Embeddable Privacy-aware
Biomarker Implementations
Lead: Dr. Emre Ertin, The Ohio State University; 10% effort (1.2 CM)
Abstract: The mHealth Center for Discovery, Optimization & Translation of Temporally-Precise Interventions
(the mDOT Center) will enable a new paradigm of temporally-precise medicine to maintain health and manage
the growing burden of chronic diseases. The mDOT Center will develop and disseminate the methods, tools,
and infrastructure necessary for researchers to pursue the discovery, optimization and translation of temporally-
precise mHealth interventions. Such interventions, when dynamically personalized to the moment-to-moment
biopsychosocial-environmental context of each individual, will precipitate a much-needed transformation in
healthcare by enabling patients to initiate and sustain the healthy lifestyle choices necessary for directly
managing, treating, and in some cases even preventing the development of medical conditions. Organized
around three Technology Research & Development (TR&D) projects, mDOT represents a unique national
resource that will develop multiple methodological and technological innovations and support their translation
into research and practice by the mHealth community in the form of easily deployable wearables, apps for
wearables and smartphones, and a companion mHealth cloud system, all open-source.
TR&D3 will develop, validate and disseminate algorithms, tools and software/hardware designs for translation of
temporally-precise mHealth interventions through resource efficient, real time, low-latency and privacy-aware
implementation of an array of digital biomarkers that can be deployed at scale. Our approach is centered around
a hierarchical computing framework that reduces the data into minimal modular abstractions called Micromarkers
computed at the edge devices (Aim 1). Modular Micromarker abstractions are used to compress task-specific
information relevant to biomarker computations at the edge devices while stripping nuisance variables such as
hardware biases/drifts and background levels not pertinent to inference. Our hierarchical computing framework
can be extended to implement high data rate sensor arrays at edge devices to be used at new point of care and
ambulatory settings. This is accomplished through integrating a compressive sensing pre-processor to achieve
signal acquisition in a resource constrained setting (Aim 2). Finally, TR&D3 will create computational
mechanisms and a general biomarker privacy framework to enable participant control over the privacy-utility
trade-offs during study design, data collection, and sharing of collected mHealth data for third party research
when data cross trust domains (Aim 3).
These technologies will be developed in collaboration with collaborative projects and will be disseminated to
service projects to ensure that TR&D3 technologies can solve real problems facing the health research
community and ensure the usability of these technologies by investigators who are external to the mDOT
investigating team. TR&D3 will synergistically work in partnership with the other TR&D projects, the Training and
Dissemination Core, and the Administration Core to maximize the societal impact of TR&D3 technologies.
1
首席研究员:库马尔,桑托什
TR&D3:通过高效且可嵌入的隐私意识转换时间精确的MHealth
生物标志物实现
负责人:俄亥俄州立大学Emre Ertin博士; 10%的努力(1.2厘米)
摘要:MHealth发现,优化和翻译的暂时性干预中心
(MDOT中心)将使暂时药物的新范式保持健康和管理
慢性疾病的负担越来越大。 MDOT中心将开发和传播方法,工具,
研究人员追求时间的发现,优化和翻译所需的基础设施
精确的MHealth干预措施。这样的干预措施,当动态性地对瞬间
每个个体的生物心理社会环境环境将促成急需的转变
通过使患者能够直接启动和维持健康的生活方式选择来进行医疗保健
管理,治疗,在某些情况下甚至阻止医疗状况的发展。有组织
MDOT大约三个技术研发(TR&D)项目,代表了一个独特的国家
将开发多种方法论和技术创新并支持其翻译的资源
以易于部署的可穿戴设备的形式进入MHealth社区的研究和练习
可穿戴设备和智能手机,以及配套MHealth云系统,都是开源的。
TR&D3将开发,验证和传播用于翻译的算法,工具和软件/硬件设计
通过资源效率,实时,低延迟和隐私意识,暂时专门的MHealth干预措施
可以大规模部署的一系列数字生物标志物的实施。我们的方法集中在
一个分层计算框架,将数据简化为最小模块化抽象称为MicroMARMARKERS
在边缘设备上计算(AIM 1)。模块化微标志物抽象用于压缩特定于任务的特定
与边缘设备上的生物标志物计算相关的信息,同时剥离滋扰变量,例如
硬件偏见/漂移和背景级别与推理无关。我们的分层计算框架
可以扩展以在边缘设备上实现高数据速率传感器阵列以在新的护理点和
门诊环境。这是通过集成压缩感应前处理器来实现的
在资源约束设置中获取信号(AIM 2)。最后,TR&D3将创建计算
机制和一般的生物标志物隐私框架,以使参与者控制隐私效果
在研究设计,数据收集和共享的MHealth数据共享第三方研究期间的权衡取舍
当数据交叉信任域(AIM 3)时。
这些技术将与协作项目合作开发,并将被传播到
服务项目以确保TR&D3技术可以解决健康研究面临的实际问题
社区并确保MDOT外部调查人员的这些技术可用性
调查团队。 TR&D3将与其他TR&D项目,培训和
传播核心和管理核心,以最大化TR&D3技术的社会影响。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emre Ertin其他文献
Emre Ertin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emre Ertin', 18)}}的其他基金
mDOT TR&D3 (Translation): Translation of Temporally Precise mHealth via Efficient and Embeddable Privacy-aware Biomarker Implementations
mDOT TR
- 批准号:
10541810 - 财政年份:2020
- 资助金额:
$ 30.18万 - 项目类别:
相似国自然基金
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
- 批准号:62301029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深度学习中的流形优化问题:算法设计与求解软件包的开发
- 批准号:12301408
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
- 批准号:22373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
- 批准号:52335001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
面向量子模拟算法的量子软件优化技术研究
- 批准号:62302395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 30.18万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 30.18万 - 项目类别:
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
- 批准号:
10784983 - 财政年份:2023
- 资助金额:
$ 30.18万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 30.18万 - 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 30.18万 - 项目类别: