Cellular Pathophysiology of Neuronal Na/K-ATPase Dysfunction
神经元 Na/K-ATP 酶功能障碍的细胞病理生理学
基本信息
- 批准号:10539624
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:ATP1A3 geneAction PotentialsAcuteAddressCell SurvivalCell modelChildhoodChronicConflict (Psychology)Developmental Delay DisordersDiseaseDominant-Negative MutationDystoniaEpilepsyEquilibriumExhibitsFunctional disorderGenesGeneticGoalsHemiplegiaHomeostasisHumanImpairmentInduced pluripotent stem cell derived neuronsIonsKnock-outMeasurementMediatingMembraneMembrane PotentialsMigraineModelingMolecularMonitorMutationNa(+)-K(+)-Exchanging ATPaseNeurodevelopmental DisorderNeurologic DysfunctionsNeurologic SymptomsNeuronal DysfunctionNeuronsOutcomePathogenesisPatientsPharmacologyPhysiologicalPredispositionProteinsPumpRecoveryResourcesRestSecondary toSplice-Site MutationSymptomsSyndromeTestingTimeTransgenesViralWorkalternating hemiplegiacerebral atrophycytotoxicitydriving forceeffective therapyexcitatory neuronexperimental studyextracellulargamma-Aminobutyric Acidgene therapyinduced pluripotent stem cellknock-downloss of functionloss of function mutationmutantnervous system disorderneurodevelopmentneuron lossneuronal excitabilityneurotoxicityneurotransmissionnovel therapeutic interventionoptogeneticspreventvoltage
项目摘要
SUMMARY
Heterozygous loss-of-function mutations in ATP1A3, the gene encoding the catalytic (α3) subunit of the neuronal
Na/K-ATPase, are associated with a spectrum of neurodevelopmental syndromes including the prototypical
disorder Alternating Hemiplegia of Childhood (AHC), which has no effective therapy. These conditions are
associated with acute attacks of transient weakness and dystonia, and poor long term outcome with delayed
neurodevelopment and brain atrophy believed secondary to chronic neuron loss. Although rare, ATP1A3
mutations evoke neurological dysfunction shared by common disorders such as epilepsy and migraine. While
much has been learned about the genetic basis of these disorders, the cellular consequences of ATP1A3
dysfunction in human neurons and fundamental pathophysiological mechanisms are poorly understood. We
have modeled the cellular effects of ATP1A3 mutations using neurons differentiated from patient-specific induced
pluripotent stem cells (iPSCs). We propose to exploit this model to determine cellular pathophysiological
mechanisms associated with impaired Na/K pump activity and the resulting altered ion homeostasis that explain
both short term (hemiplegia, dystonia) and long term (developmental delay, chronic neuron loss) manifestation
of ATP1A3 dysfunction. In Aim 1, we will test the hypothesis that direct measurement of neuronal pump current
can distinguish between haploinsufficiency and dominant-negative mechanisms, and determine if impaired pump
activity can be rescued with a viral ATP1A3 transgene. In Aim 2, we will test the hypothesis that a blunted
transmembrane K+ concentration gradient causes a depolarized neuronal resting membrane potential as a
consequence of lower than normal driving force mediating outward K+ leak current, which impacts neuronal
excitability. We will test this hypothesis by determining if potentiating K+ leak channel activity pharmacologically
or genetically in ATP1A3 mutant neurons will compensate for the blunted intracellular to extracellular K+ driving
force, normalize the resting potential and prevent depolarization block. Separate experiments will investigate
susceptibility to and recovery from depolarization block between mutant and non-mutant neurons, and correlate
these findings with intracellular Na+ dynamics. In Aim 3, we will investigate potential cellular pathophysiological
mechanisms responsible for the long-term manifestations of ATP1A3. We will test the hypothesis that ATP1A3
mutant neurons exhibit a delayed GABA switch and this can be corrected by inhibition or knockdown of the
Na/K/2Cl cotransporter (NKCC1). Finally, we will test hypothesis that impaired Na/K-ATPase activity renders
neurons susceptible to intracellular Na+ overload, which can trigger cytosolic Ca2+ overload and cytotoxicity.
Collectively, this work will reveal important aspects of short- and long-term neuronal pathogenesis associated
with ATP1A3 dysfunction, and promote a mechanistically driven approach to finding new therapeutic strategies.
概括
ATP1A3中杂合丧失功能突变,编码神经元的催化(α3)亚基的基因
Na/k-ATPase与一系列神经发育综合征有关
没有有效治疗的儿童偏瘫(AHC)交替偏瘫。这些条件是
与瞬态无力和肌张力障碍的急性发作有关,长期结局不良
神经发育和脑萎缩认为是慢性神经元丧失的继发性。尽管很少见,但ATP1A3
突变引起的神经功能障碍,由癫痫和偏头痛等常见疾病共享。尽管
关于这些疾病的遗传基础的知识已经很多,ATP1A3的细胞后果
人类神经元和基本病理生理机制的功能障碍知之甚少。我们
已经使用与患者特异性诱导的神经元建模了ATP1A3突变的细胞效应
多能干细胞(IPSC)。我们建议利用该模型来确定细胞病理生理学
与Na/k泵活性受损相关的机制以及由此解释的离子稳态改变的机制
短期(偏瘫,肌张力障碍)和长期(发育延迟,慢性神经元丧失)表现
ATP1A3功能障碍。在AIM 1中,我们将测试直接测量神经泵电流的假设
可以区分单倍不足和主导阴性机制,并确定泵是否受损
可以通过病毒ATP1A3变换来挽救活动。在AIM 2中,我们将检验一个钝的假设
跨膜K+浓度梯度引起去极化的神经元静息膜电位作为A
介导向外K+泄漏电流的低于正常驱动力的结果,这会影响神经元
兴奋性。我们将通过确定是否会增强K+泄漏通道活动来检验该假设
或在ATP1A3突变神经元中通常会补偿细胞内至细胞外K+驱动
强力,使静息电势归一化并防止沉积阻滞。单独的实验将调查
突变和非突变神经元之间沉积块的敏感性和恢复性,并相关
这些具有细胞内NA+动力学的发现。在AIM 3中,我们将研究潜在的细胞病理生理学
负责ATP1A3长期表现的机制。我们将测试ATP1A3的假设
突变神经元暴露了延迟的GABA开关,可以通过抑制或敲除纠正
NA/K/2CL共转运蛋白(NKCC1)。最后,我们将检验假设损害Na/K-ATPase活性渲染的假设
神经元易受细胞内Na+过载,这会触发胞质Ca2+过载和细胞毒性。
总的来说,这项工作将揭示与短期和长期神经元发病机理相关的重要方面
使用ATP1A3功能障碍,并促进一种机械驱动的方法来寻找新的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alfred L. George其他文献
Prophecy or empiricism? Clinical value of predicting versus determining genetic variant functions
预言还是经验主义?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.6
- 作者:
A. Brunklaus;Alfred L. George;D. Lal;E. Heinzen;A. Goldman - 通讯作者:
A. Goldman
High-Dose Midazolam for Pediatric Refractory Status Epilepticus: A Single-Center Retrospective Study*
高剂量咪达唑仑治疗小儿难治性癫痫持续状态:单中心回顾性研究*
- DOI:
10.1097/pcc.0000000000003043 - 发表时间:
2022 - 期刊:
- 影响因子:4.1
- 作者:
Z. S. Daniels;N. Srdanovic;K. Rychlik;Craig M. Smith;Joshua L. Goldstein;Alfred L. George - 通讯作者:
Alfred L. George
Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita.
先天性肌强直患者肌肉氯离子通道基因的无义和错义突变。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:3.5
- 作者:
Alfred L. George;K. Sloan;Gerald M. Fenichel;Grant A. Mitchell;Roland Spiegel;R. Pascuzzi - 通讯作者:
R. Pascuzzi
Comprehensive functional evaluation of KCNE1 variants using automated patch clamp recording
- DOI:
10.1016/j.bpj.2021.11.1547 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Carlos G. Vanoye;Reshma R. Desai;Nirvani Jairam;Nora Ghabra;Jens Meiler;Charles R. Sanders;Alfred L. George - 通讯作者:
Alfred L. George
Use-Dependent Block of Voltage-Gated Sodium Channels by Orphenadrine through Binding at the Local Anesthetic Receptor
- DOI:
10.1016/j.bpj.2008.12.1216 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Jean-François Desaphy;Antonella Dipalma;Teresa Costanza;Michela De Bellis;Alfred L. George;Diana Conte Camerino - 通讯作者:
Diana Conte Camerino
Alfred L. George的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alfred L. George', 18)}}的其他基金
Northwestern University O'Brien Kidney National Resource Center
西北大学奥布莱恩肾脏国家资源中心
- 批准号:
10754080 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Cellular Pathophysiology of Neuronal Na/K-ATPase Dysfunction
神经元 Na/K-ATP 酶功能障碍的细胞病理生理学
- 批准号:
10646335 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Kinetic Imaging Plate Reader for Drug Discovery and Biology
用于药物发现和生物学的动态成像读板仪
- 批准号:
10177367 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Decrypting Variants of Uncertain Significance in Long-QT Syndrome
解密长QT综合征中不确定意义的变异
- 批准号:
10004933 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
- 批准号:
10522820 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
- 批准号:
10688211 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Cellular Pathophysiology of Neuronal Na/K-ATPase Dysfunction
神经元 Na/K-ATP 酶功能障碍的细胞病理生理学
- 批准号:
10646335 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别: