Examining Skeletal Stem Cell Diversity and its Role in Intervertebral Disc Regeneration
检查骨骼干细胞多样性及其在椎间盘再生中的作用
基本信息
- 批准号:10537672
- 负责人:
- 金额:$ 3.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2024-08-15
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAdipose tissueAffectAnimalsBMP2 geneBiological AssayBiomedical EngineeringBiomimeticsBone MarrowCartilageCell surfaceCellsChondrogenesisConnective TissueCuesDataDegenerative polyarthritisDevelopmentEmbryoEvaluationFGF2 geneFemurFibrocartilagesFlow CytometryFoundationsGene Expression ProfilingGenetic VariationGrowth FactorHeadHematopoiesisHomeobox GenesHumanHyaline CartilageIn VitroInjectionsInjuryIntervertebral disc structureKnowledgeLimb structureMarrowMedicineMethodsMusMusculoskeletal DiseasesNatural regenerationNatureOperative Surgical ProceduresOpioidOsteocytesOsteogenesisOutputPathway interactionsPlayProductionProgressive DiseasePropertyRecombinant ProteinsRecombinantsRegulationReportingRepressionResearchRoleSHH geneSignal TransductionSiteSpecific qualifier valueSpecimenSpinal FusionStem cell transplantSteroidsStructureSurgical ModelsTailTechniquesTestingTissuesVascular Endothelial Growth FactorsVertebral columnage relatedbasebonebone morphogenic proteincartilage regenerationchronic back painclinical translationcombatdisc regenerationeffective therapyexperimental studygenetic signaturein vivoinnovationintervertebral disk degenerationmesenchymal stromal cellminimally invasivemorphogensmouse modelnovelosteogenicpre-clinicalpreventprogenitorprospectivereduce symptomsrepairedscaffoldself-renewalskeletalskeletal stem cellskeletal tissuestandard carestem cell based approachstem cell expansionstem cell fatestem cell therapystem cellstargeted treatment
项目摘要
Project Summary/Abstract.
The intervertebral disc (IVD) is a highly specialized, fibrocartilaginous structure that deteriorates at a rate faster
than any other connective tissue in the body. This condition is commonly referred to as IVD degeneration and a
critical challenge for IVD repair is the development of effective treatments that reverses the fibrocartilage
damage. Due to their cell intrinsic properties of self-renewal and differentiation, the utilization of tissue resident
stem cells holds promise as a stem cell-based approach to combat IVD degeneration. Our lab was the first to
identify, isolate and functionally characterize bona fide skeletal stem cells (SSCs) and their committed
downstream progenitors that give rise strictly to bone, cartilage, and marrow stroma in mice and humans32,33.
SSCs are distinct from mesenchymal stromal cells which represent highly heterogenous mixtures of cell types57.
We’ve since have leveraged our knowledge of SSCs to understand degenerative skeletal conditions including
osteoarthritis, non-unions and age-related osteoporosis46,58,59. More recently, we used our isolation methods to
discover tissue resident SSCs within mouse and human IVDs. In this proposal, the overarching objective is to
identify the intrinsic cues that dictate SSC fate into IVD tissue as well as examine the extrinsic cues that may
guide IVD regeneration using a novel microfracture surgical model in the mouse caudal IVD. Our preliminary
data suggests that IVD SSCs are distinctly more chondrogenic than femur SSCs in their differentiation capacity
both in vitro and in vivo. Additionally, we found that mouse IVD SSCs exclusively express HOXA4 and their
skeletal fate decisions can be dictated by the addition of morphogens FGF2, SHH and WNT3A in vitro. We also
found that acute microfracture injury of caudal IVDs in the mouse tail does not amplify resident IVD SSCs and
transplantation of IVD SSCs into microfractured IVD fail to generate fibrocartilage, thus suggesting they may
require the guidance of additional factors for cartilage differentiation in vivo. In this proposal, our overall
hypothesis is that HOXA4 is an intrinsic regulator, while FGF2 is an extrinsic regulator of IVD tissue fate,
and that modulating these pathways in IVD SSCs can be used as a potential stem cell-targeting therapy
for combating IVD degeneration. In Aim 1, we will address this hypothesis by modulating HOXA4 expression
in IVD and femur (control) SSCs via lentiviral transduction and subsequently perform in vitro and in vivo
differentiation assays to assess their cartilagenic IVD output. In Aim 2, we will test if the injection of morphogens
FGF2, SHH and WNT3A can change the fate decision of microfractured resident SSCs to regenerate damaged
IVD tissue in vivo. Ultimately, this set of basic and pre-clinical proposed experiments will further define the
concept the SSC diversity and set the foundation for the clinical translation of stem cell-based therapies for
preventing and reversing IVD-related musculoskeletal diseases.
项目摘要/摘要。
椎间盘(IVD)是一种高度专业化的纤维化结构,以更快的速度确定速度
比体内任何其他连接的组织。这种情况通常称为IVD变性和
IVD修复的关键挑战是开发有效的治疗方法,从而逆转纤维球杆菌
损害。由于它们的细胞自我更新和分化的固有特性,组织居民的利用
干细胞有望成为基于干细胞的方法来对抗IVD变性。我们的实验室是第一个
识别,孤立和功能表征真正的骨骼干细胞(SSC)及其承诺
在小鼠和人类中严格引起骨骼,软骨和骨髓基质的下游祖细胞32,33。
SSC不同于间充质基质细胞,这些细胞代表了细胞类型的高度异质混合物57。
从那以后,我们一直利用我们对SSC的知识来了解退行性骨骼状况
骨关节炎,非工会和与年龄相关的骨质疏松症46,58,59。最近,我们使用隔离方法
发现小鼠和人类IVD中的组织居民SSC。在此提案中,总体目标是
确定将SSC命运决定到IVD组织的固有提示,并检查可能的外部线索
在小鼠尾部IVD中使用新型的微裂缝手术模型引导IVD再生。我们的初步
数据表明,IVD SSC比股骨SSC具有分化能力明显更大的软骨。
体外和体内。此外,我们发现鼠标IVD SSC专门表达HOXA4及其
骨骼命运的决定可以通过体外添加形态的FGF2,SHH和WNT3A来决定。我们也是
发现小鼠尾部尾肠静脉IVD的急性微骨损伤不会扩大居民IVD SSC和
将IVD SSC移植到微裂的IVD中,无法产生纤维球杆菌,因此表明它们可能可以
需要指导体内软骨分化的其他因素。在这个建议中,我们的总体
假设是Hoxa4是一种固有的调节剂,而FGF2是IVD组织命运的外部调节剂,
并且在IVD SSC中调节这些途径可以用作潜在的干细胞靶向疗法
用于对抗IVD变性。在AIM 1中,我们将通过调节HOXA4表达来解决这一假设
通过慢病毒翻译在IVD和股骨(对照)SSC中,随后在体外和体内进行
分化测定以评估其软骨IVD输出。在AIM 2中,我们将测试注射形态剂是否
FGF2,SHH和WNT3A可以改变微裂居民SSC的命运决定,以再生损坏
IVD组织在体内。最终,这组基本和临床前提出的实验将进一步定义
概念SSC多样性并为基于干细胞的临床翻译奠定了基础
防止和逆转IVD相关的肌肉骨骼疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Malachia Hoover其他文献
Malachia Hoover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Malachia Hoover', 18)}}的其他基金
Examining Skeletal Stem Cell Diversity and its Role in Intervertebral Disc Regeneration
检查骨骼干细胞多样性及其在椎间盘再生中的作用
- 批准号:
10723101 - 财政年份:2022
- 资助金额:
$ 3.51万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 3.51万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 3.51万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 3.51万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 3.51万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 3.51万 - 项目类别: