Subcellular Wireless Axons for in vivo Localized Neuronal Excitation

用于体内局部神经元兴奋的亚细胞无线轴突

基本信息

项目摘要

Project Summary This BRG R01 (PAR-16-242) application aims to greatly improved spatial and temporal resolution: Penetrating electrical stimulation arrays are a crucial component of basic neuroscience research and human neuroprosthetics. A challenge with this technology is achieving a highly localized stimulated area of the same neurons over weeks and months. However, implantation of cortical microelectrodes causes a reactive tissue response, which results in a degradation of the preferred functional performance over time, thus limiting the device capabilities. Current electrical stimulation implants are tethered to the skull, which chronically increases the impact of mechanical mismatch, causes neural degeneration around the implant, increases the chance of infection, increases the chance of mechanical trauma induced failure as well as shifting of the electrode position, and increases in electrical impedances from glial scarring. In turn, the electrical stimulation loses its effectiveness to excite neural tissue, making longevity a challenge. Simply increasing the electrical current to compensate can lead to permenant damage to the tissue and/or the electrode. This proposal proves an innovative strategy that uses leading-edge biocompatible materials to develop innovative “Wireless Axon” electrodes that are ultra-small and untethered, with bioactive surfaces and nanostructured materials for enhanced signal transduction to electrically excitable tissue. The project aims to decouple the mechanical requirements necessary in traditional microstimulation technology and improve spatial selectivity of activated neurons for stable long-term electrical stimulation. The guiding hypothesis is that decoupling the mechanical tether will improve tissue integration, while immobilized biomolecules will effectively intervene with the reactive tissue response as well as improve electrode-neuron signal-coupling and selectivity. This project is likely to make significant contributions through developing advanced neural probes for long- term (permanent), high quality, and selective neural stimulation. These could potentially lead to paradigm shifts in both neuroscience research and clinical neuroprosthetics and neurostimulation through creating the capability of activating specific neurons for long periods of time with great precision. Our guiding hypothesis is that the product of the combined benefit is synergistic and greater than the sum of its parts. The outcomes of this project are also likely to establish new biologically inspired paradigms for creating long-lasting, high-fidelity neural interfaces with biomimetic materials as well as new paradigms for longitudinally probing neural circuits, particularly for the study of learning and plasticity. Several variations of the technology developed in this project is expected to be compatible with optogenetics. This project would impact both the neuroscience research community, and clinical scientists (neurosurgeons, neurologists, and patients) that use and benefit from neuroprosthetic- and neurostimulation-based treatments interventions.
项目摘要 该BRG R01(PAR-16-242)申请旨在极大地改善空间和临时分辨率: 穿透电气模拟阵列是基本神经科学研究和人类的关键组成部分 神经假想。这项技术的挑战是实现相同的高度局部刺激区域 神经元数周和几个月。但是,皮质微电极的植入会导致反应性组织 响应,这会导致首选功能性能随着时间的推移而降级,从而限制了 设备功能。当前的电动仿真将束缚在头骨上,该颅骨长期增加 机械不匹配的影响会导致植入物周围的神经变性,增加了 感染,增加了机械创伤引起的失败以及电极移动的机会 位置,并增加神经胶质疤痕的电阻抗。反过来,电刺激失去了 激发神经元组织的有效性,使寿命成为挑战。简单地将电流增加到 补偿可以导致对组织和/或电极的允许损害。 该建议证明了一种创新的策略,该策略使用领先的生物相容性材料来开发 创新的“无线轴突”电极是超小型和不受限制的,具有生物活性表面和 纳米结构材料,以增强信号转导向电动组织。该项目旨在 解除传统微刺激技术所需的机械要求并改进 活化神经元的空间选择性用于稳定的长期电气模拟。指导假设是 将机械系绳解耦将改善组织的整合,而固定的生物分子将有效地 干预反应性组织反应以及改善电极神经元信号耦合和选择性。 该项目可能会通过开发长期的高级神经问题做出重大贡献 术语(永久),高质量和选择性神经刺激。这些可能导致范式变化 在神经科学研究和临床神经心理和神经刺激中, 长期激活特定神经元的能力,精确。我们的指导假设是 合并福利的产物是协同的,并且比其各个部分的总和更大。结果 该项目还可能建立新的以生物学启发的范例来创造持久的高保真性 具有仿生材料的神经界面以及纵向探测神经回路的新范式, 特别是为了学习学习和可塑性。该项目开发的技术的几种变体 预计将与光遗传学兼容。该项目将影响神经科学研究 社区和临床科学家(神经外科医生,神经科医生和患者)使用和受益 神经假体和神经刺激的治疗干预措施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Takashi Daniel Yoshida Kozai其他文献

Parvalbumin interneuron activity induces slow cerebrovascular fluctuations in awake mice
小清蛋白中间神经元活动诱导清醒小鼠脑血管缓慢波动
  • DOI:
    10.1101/2024.06.15.599179
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Rakymzhan;Mitsuhiro Fukuda;Takashi Daniel Yoshida Kozai;Alberto L Vazquez
  • 通讯作者:
    Alberto L Vazquez

Takashi Daniel Yoshida Kozai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Takashi Daniel Yoshida Kozai', 18)}}的其他基金

Modulation of Oligodendrocyte Calcium Activity with ICMS and Melatonin Stimulation
ICMS 和褪黑激素刺激调节少突胶质细胞钙活性
  • 批准号:
    10622191
  • 财政年份:
    2022
  • 资助金额:
    $ 33.12万
  • 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
  • 批准号:
    10668278
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
  • 批准号:
    10267211
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
  • 批准号:
    10599740
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
2020 Nuroelectronic Interfaces Gordon Research Conference and Gordon Research Seminar
2020年神经电子接口戈登研究会议暨戈登研究研讨会
  • 批准号:
    9913124
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
Using Electrical Stimulation to Modulation Microglia and the Conversion of Microglia Phenotypes
利用电刺激调节小胶质细胞和小胶质细胞表型的转换
  • 批准号:
    10526723
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
  • 批准号:
    10447133
  • 财政年份:
    2020
  • 资助金额:
    $ 33.12万
  • 项目类别:
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
  • 批准号:
    10307095
  • 财政年份:
    2019
  • 资助金额:
    $ 33.12万
  • 项目类别:
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
  • 批准号:
    9886359
  • 财政年份:
    2019
  • 资助金额:
    $ 33.12万
  • 项目类别:
Mechanisms behind Electrode Induced BBB damage's impact on neural recording
电极诱导 BBB 损伤对神经记录影响的机制
  • 批准号:
    9760009
  • 财政年份:
    2015
  • 资助金额:
    $ 33.12万
  • 项目类别:

相似国自然基金

跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
  • 批准号:
    72373114
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
  • 批准号:
    72373068
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
新型城镇化与区域协调发展的机制与治理体系研究
  • 批准号:
    72334006
  • 批准年份:
    2023
  • 资助金额:
    167 万元
  • 项目类别:
    重点项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
  • 批准号:
    72364037
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
  • 批准号:
    82360345
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Alcohol-induced epigenetic reprogramming of PPAR-α affects allopregnanolone biosynthesis
酒精诱导的 PPAR-α 表观遗传重编程影响异孕酮生物合成
  • 批准号:
    10658534
  • 财政年份:
    2023
  • 资助金额:
    $ 33.12万
  • 项目类别:
Establishing the anatomical and functional mechanisms of white matter deep brain stimulation
建立白质深部脑刺激的解剖和功能机制
  • 批准号:
    10803745
  • 财政年份:
    2023
  • 资助金额:
    $ 33.12万
  • 项目类别:
The effects of wildfire exposure on maternal allergic asthma and consequences on neurobiology
野火暴露对母亲过敏性哮喘的影响及其对神经生物学的影响
  • 批准号:
    10727122
  • 财政年份:
    2023
  • 资助金额:
    $ 33.12万
  • 项目类别:
High-definition Endoscopic Ultrasound Navigation for Targeted Dual Neuromodulation Therapy
用于靶向双重神经调节治疗的高清内窥镜超声导航
  • 批准号:
    10817376
  • 财政年份:
    2023
  • 资助金额:
    $ 33.12万
  • 项目类别:
Cognitive sequelae of cerebrovascular and gut dysfunction in post-acute COVID-19 syndrome.
急性后 COVID-19 综合征脑血管和肠道功能障碍的认知后遗症。
  • 批准号:
    10627220
  • 财政年份:
    2023
  • 资助金额:
    $ 33.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了