Machine learning with immunogenetics for the prediction of hematopoietic cell transplant outcomes
机器学习与免疫遗传学预测造血细胞移植结果
基本信息
- 批准号:10534187
- 负责人:
- 金额:$ 59.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-05 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAffectAlgorithmsAllelesAllogenicAllograftingAntitumor ResponseBehaviorBindingBiological ModelsBone Marrow TransplantationCancer EtiologyCause of DeathCell Surface ReceptorsCellsClinicalClinical ResearchDataData ScientistDiseaseDonor SelectionEducationFailureGene CombinationsGeneticGenetic PolymorphismGenotypeHLA-B AntigensImmuneImmune systemImmunogeneticsImmunologistIn VitroIncidenceIndividualInfluentialsInnate Immune ResponseLigandsMachine LearningMalignant NeoplasmsMapsMediatingModelingNK cell receptor NKB1Natural Killer CellsOutcomePatientsPeptide Leader SequencesPeptidesPhenotypePhysiciansPopulationPositioning AttributeProcessReceptor GeneRecurrent diseaseRelapseReproducibilityResearchRetrospective StudiesRiskScientistShapesStatistical ModelsT cell responseT-LymphocyteTimeTissuesTrainingTransplant RecipientsTransplantationUnited StatesValidationVariantWorkadaptive immune responsecancer cellcohortcurative treatmentsdimorphismdisorder riskgraft vs host diseasegraft vs leukemia effecthematopoietic cell transplantationimmune functionin vivoleukemialeukemia relapsemachine learning modelmortalitynovel strategiespeptide Bpersonalized medicinepreventreceptorrelapse predictionresponse
项目摘要
ABSTRACT
Allogeneic hematopoietic cell transplantation (HCT) is the only curative treatment for most forms of acute
myelogenous leukemia (AML), but its 50% failure rate remains unacceptably high, with the principal
causes of death due to disease relapse and graft-versus-host disease. When successful, HCT prevents
leukemic relapse due to a graft versus leukemia effect, co-mediated by T cell and natural killer (NK) cell
immune functions. Selection of donors whose allografts will provide higher NK anti-leukemic response
potential but low GVHD risk remains a major unmet need in HCT.
The polygenic, polymorphic KIR receptors, in combination with their HLA ligands, control NK
function, dictating NK repertoire content and establishing thresholds for NK cell response in a process
called “NK education”. Large retrospective studies in HCT have demonstrated that specific KIR-HLA
allele combinations associated with NK education are predictive for relapse control, but they represent
only a fraction of known KIR-HLA interactions. Furthermore, out of the thousands of phenotypes present
in the NK repertoire, the NK population(s) responsible for leukemia control in HCT is unknown and they
likely differ between transplant pairs. Aim 1 proposes a machine learning approach to integrate NK
genotype, phenotype, and function to identify how genotype determines overall repertoire response and
which subpopulations contribute most to global response. Parallel statistical modeling of NK genotypes
and HCT outcome in a cohort of 2800 AML patient may confirm the same genotypes that are potent for
global response also play a role in HCT outcomes but may also identify unexpected ones.
HLA is the most important determinant of GVHD risk. Precise HLA matching lowers the risk for
GVHD, but for patients who lack HLA-compatible donors, predicting permissible HLA mismatches is a
paramount and unmet need. Two lineages of HLA-B allotypes exist based on the M and T leader peptide
dimorphism, and GVHD risk in HLA-mismatched HCT differs depending on the match status of the leader.
The division of the HLA-B locus into two lineages provides a novel approach for mapping functional motifs
in transplantation that removes reduces the sheer numbers of polymorphic positions that previously
precluded examination of more than 1 residue at a time. Machine learning approaches using HLA data
from more than 11,000 transplant patients will permit assessment of the full spectrum of lineage variation
and the relationship between T-cell and NK alloresponses.
抽象的
同种异体造血细胞移植(HCT)是大多数急性的唯一治疗方法
髓质白血病(AML),但其50%的失败率仍然不可接受,主管
由于疾病缓解和移植物抗宿主疾病而导致的死亡原因。成功后,HCT预防
由于移植物与白血病效应,白血病继电器由T细胞和天然杀手(NK)细胞共同介导
免疫功能。选择同种异体移植物将提供较高NK抗白血病反应的供体
在HCT中,潜在但GVHD风险很低仍然是未满足的需求。
多基因多态KIR受体与HLA配体结合使用,控制NK
功能,指示NK曲目含量并在过程中建立NK单元响应的阈值
称为“ NK教育”。 HCT中的大型回顾性研究表明,特定的Kir-Hla
与NK教育相关的等位基因组合可以预测救济控制,但它们代表
只有一小部分已知的Kir-HLA相互作用。此外,存在数千种表型
在NK曲目中,负责HCT白血病控制的NK人群尚不清楚,他们
移植对之间可能有所不同。目标1提案一种机器学习方法来集成NK
基因型,表型和功能,以确定基因型如何确定总体曲目响应和
哪些亚群对全球反应贡献最大。 NK基因型的平行统计建模
在2800名AML患者队列中的HCT结局可能会证实相同的基因型
全球响应在HCT结果中也起作用,但也可能识别出意外的结果。
HLA是GVHD风险的最重要决定者。精确的HLA匹配降低了
GVHD,但对于缺乏与HLA兼容捐助者的患者,预测允许的HLA不匹配是
最重要的和未满足的需求。基于M和T领导者肽存在两条HLA-B同种型
HLA匹配的HCT中的双态性和GVHD风险取决于领导者的比赛状态。
HLA-B基因座分为两个谱系,为绘制功能基序提供了一种新颖的方法
在移植中可以减少以前的多态位置数量
一次排除了一次超过1个居留的检查。使用HLA数据的机器学习方法
超过11,000名移植患者将允许评估谱系变化的全部差异
以及T-cell和NK同种异体的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHARINE C HSU其他文献
KATHARINE C HSU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHARINE C HSU', 18)}}的其他基金
HCMV-induced innate-like CD8 T cells and allogeneic HCT outcome
HCMV 诱导的先天样 CD8 T 细胞和同种异体 HCT 结果
- 批准号:
10390447 - 财政年份:2021
- 资助金额:
$ 59.59万 - 项目类别:
Machine learning with immunogenetics for the prediction of hematopoietic cell transplant outcomes
机器学习与免疫遗传学预测造血细胞移植结果
- 批准号:
10322105 - 财政年份:2021
- 资助金额:
$ 59.59万 - 项目类别:
HCMV-induced innate-like CD8 T cells and allogeneic HCT outcome
HCMV 诱导的先天样 CD8 T 细胞和同种异体 HCT 结果
- 批准号:
10590647 - 财政年份:2021
- 资助金额:
$ 59.59万 - 项目类别:
Natural killer cell and T-cell crosstalk in CMV infection
CMV 感染中的自然杀伤细胞和 T 细胞串扰
- 批准号:
9398188 - 财政年份:2017
- 资助金额:
$ 59.59万 - 项目类别:
KIR and HLA in cis and trans cooperatively shape human NK education
顺式和反式的 KIR 和 HLA 合作塑造人类 NK 教育
- 批准号:
9160652 - 财政年份:2016
- 资助金额:
$ 59.59万 - 项目类别:
KIR and HLA in cis and trans cooperatively shape human NK education
顺式和反式的 KIR 和 HLA 合作塑造人类 NK 教育
- 批准号:
9310137 - 财政年份:2016
- 资助金额:
$ 59.59万 - 项目类别:
Phase I study humanized 3F8 MoAb (IND 112594) and NK cells (IND BB-13399) for neuroblastoma
人源化 3F8 MoAb (IND 112594) 和 NK 细胞 (IND BB-13399) 治疗神经母细胞瘤的 I 期研究
- 批准号:
9488351 - 财政年份:2016
- 资助金额:
$ 59.59万 - 项目类别:
Selection of Allogeneic Hematopoietic Cell Donor Based on KIR and HLA Genotypes
基于KIR和HLA基因型的同种异体造血细胞供体选择
- 批准号:
9271228 - 财政年份:2015
- 资助金额:
$ 59.59万 - 项目类别:
Selection of Allogeneic Hematopoietic Cell Donor Based on KIR and HLA Genotypes
基于KIR和HLA基因型的同种异体造血细胞供体选择
- 批准号:
8865414 - 财政年份:2015
- 资助金额:
$ 59.59万 - 项目类别:
Combination immunotherapy for neuroblastoma: model of innate tumor immunity
神经母细胞瘤的联合免疫治疗:先天肿瘤免疫模型
- 批准号:
8508896 - 财政年份:2012
- 资助金额:
$ 59.59万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards an inclusive genomic risk classification for acute myeloid leukemia (AML)
迈向急性髓系白血病 (AML) 的包容性基因组风险分类
- 批准号:
10752188 - 财政年份:2023
- 资助金额:
$ 59.59万 - 项目类别:
Whole Genome Sequencing for Genomic Evaluation and Risk Stratification of Patients with Myelodysplastic Syndromes
全基因组测序用于骨髓增生异常综合征患者的基因组评估和风险分层
- 批准号:
10506155 - 财政年份:2022
- 资助金额:
$ 59.59万 - 项目类别:
Machine learning with immunogenetics for the prediction of hematopoietic cell transplant outcomes
机器学习与免疫遗传学预测造血细胞移植结果
- 批准号:
10322105 - 财政年份:2021
- 资助金额:
$ 59.59万 - 项目类别:
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10506326 - 财政年份:2021
- 资助金额:
$ 59.59万 - 项目类别:
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10672974 - 财政年份:2021
- 资助金额:
$ 59.59万 - 项目类别: