Whole Genome Sequencing for Genomic Evaluation and Risk Stratification of Patients with Myelodysplastic Syndromes
全基因组测序用于骨髓增生异常综合征患者的基因组评估和风险分层
基本信息
- 批准号:10506155
- 负责人:
- 金额:$ 26.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAffectAlgorithmsAneuploidyAspirate substanceBiological AssayBone MarrowBone Marrow CellsBone Marrow DiseasesBone marrow failureCLIA certifiedCharacteristicsChromosome DeletionChromosome abnormalityClinicalClinical TrialsClinical assessmentsCytogenetic AnalysisCytogeneticsDNA Sequence AlterationDetectionDiagnosisDiagnosticDisadvantagedDiseaseDysmyelopoietic SyndromesEnrollmentEvaluationEventFailureFrequenciesFutureGeneticGenetic RiskGenomicsGoalsInformaticsInterventionKaryotype determination procedureLaboratoriesLoss of HeterozygosityMalignant NeoplasmsMarrowMetaphaseMethodsMorbidity - disease rateMutationMyeloproliferative diseaseNatural HistoryOutcomePatientsPerformancePersonsPrecision therapeuticsProspective cohortResolutionRiskRisk AssessmentSamplingSecondary acute myeloid leukemiaSecondary toStem cell transplantTestingVariantaggressive therapyclinically relevantcohortdetection limitgene panelgenetic profilinggenetic risk assessmentgenome sequencinghuman old age (65+)improvedin silicomortalitypatient stratificationpredict clinical outcomeprediction algorithmprognosticprospectiveresearch clinical testingrisk predictionrisk stratificationsuccesstumorwhole genome
项目摘要
The goal of this proposal is to improve genetic profiling and risk stratification for patients with
myelodysplastic syndromes (MDS) using clinical whole-genome sequencing. MDS is a heterogenous
group of clonal bone marrow disorders that are often fatal due to marrow failure or progression to acute myeloid
leukemia (AML). Accurate prediction progression risk is therefore critical for the management of MDS patients
in order to prolong survival and minimize the potential for morbidity and mortality associated with more
aggressive treatments. Cytogenetic analysis of bone marrow cells from MDS patients via metaphase karyotyping
is an essential component of MDS risk assessment algorithms, and is used to detect chromosomal deletions,
duplications, and aneuploidies that are associated with differential clinical outcomes. Although karyotyping has
been used effectively for decades, it has several disadvantages. These include low genomic resolution and high
failure rates that can result in incomplete genetic risk profiles for some patients. We recently developed and
validated ChromoSeq, a robust CAP/CLIA-compliant whole-genome sequencing (WGS) assay for genetic
profiling of patients with myeloid malignancies. We showed that this method was 100% sensitivity for clinically
relevant cytogenetic abnormalities in AML and identified additional cytogenetic events in up to 25% of patients
that were not detected by standard cytogenetics. These findings included new risk-defining chromosomal
abnormalities in almost 15% of patients, which resulted in better prediction of clinical outcomes. Although MDS
and AML are closely related diseases that share many features, the genomic characteristics and cellular
composition of MDS is distinct. In addition, the use of ChromoSeq results to form existing MDS risk groups has
not been clinically validated. We hypothesize that optimization of the ChromoSeq whole-genome
sequencing assay for MDS samples will improve the accuracy of genetic profiling and risk stratification
of MDS patients. Here we propose to use a combination of retrospective and prospective clinical MDS samples
to validate ChromoSeq for genetic profiling and risk assessment in MDS patients. We will first use retrospective
MDS samples to optimize and validate our existing CAP/CLIA-compliant ChromoSeq WGS assay to improve the
detection of low frequency mutations, copy number alterations (CNAs) and copy neutral loss of heterozygosity
(CNLOH), which are common in MDS (Aim 1; UH2 component). We will then use a prospective MDS cohort to
establish the clinical validity of ChromoSeq assay for genomic profiling and risk assessment of MDS patients.
This project will expand the use of the CAP/CLIA-compliant ChromoSeq assay to MDS samples so that it may
be used for future interventional clinical trials and routine clinical testing of patients with this malignancy.
该提案的目的是改善患有患者的基因分析和风险分层
使用临床全基因组测序,骨髓增生综合征(MDS)。 MDS是异源
一组克隆骨髓疾病通常由于骨髓衰竭或急性髓样而致命
白血病(AML)。因此,准确的预测进展风险对于MDS患者的管理至关重要
为了延长生存并最大程度地减少与更多相关的发病率和死亡率的潜力
积极的治疗。通过中期核分型对MDS患者的骨髓细胞的细胞遗传学分析
是MDS风险评估算法的重要组成部分,用于检测染色体缺失,
重复和与差异临床结果相关的非整倍性。虽然核分型具有
数十年来有效使用,有几个缺点。这些包括低基因组分辨率和高
失败率可能导致某些患者不完整的遗传风险概况。我们最近开发了
经过验证的Chromoseq,一种可靠的CAP/CLIA兼容的全基因组测序(WGS)测定
骨髓恶性肿瘤患者的分析。我们表明,这种方法对临床上的敏感性100%
AML的相关细胞遗传学异常,并确定了多达25%的患者的其他细胞遗传学事件
标准细胞遗传学未检测到的。这些发现包括新的风险定义染色体
几乎15%的患者中的异常,导致对临床结局的预测更好。虽然MD
AML是具有许多特征,基因组特征和细胞的密切相关疾病
MD的组成是不同的。此外,使用Chromoseq结果形成现有的MDS风险组具有
未经临床验证。我们假设Chromoseq全基因组的优化
MDS样品的测序测定将提高基因分析和风险分层的准确性
MDS患者。在这里,我们建议使用回顾性和前瞻性临床MDS样品的组合
验证MDS患者的Chromoseq进行基因分析和风险评估。我们将首先使用回顾
MDS样品以优化和验证我们现有的CAP/CLIA符合Chromoseq WGS测定法以改进
检测低频突变,拷贝数变化(CNA)和副本中性杂合性丧失
(CNLOH),在MDS中很常见(AIM 1; UH2组件)。然后,我们将使用潜在的MDS队列
建立Chromoseq分析对MDS患者的基因组分析和风险评估的临床有效性。
该项目将将符合CAP/CLIA的Chromoseq分析的使用扩展到MDS样品,以便它可以
可用于这种恶性肿瘤患者的将来的介入临床试验和常规临床测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC J DUNCAVAGE其他文献
ERIC J DUNCAVAGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC J DUNCAVAGE', 18)}}的其他基金
Genome sequencing for evaluating the efficacy, specificity, and safety of human genome editing
用于评估人类基因组编辑的有效性、特异性和安全性的基因组测序
- 批准号:
10667893 - 财政年份:2023
- 资助金额:
$ 26.15万 - 项目类别:
A Rapid and Comprehensive Approach for Clinical Genomic Profiling in Lung Cancer
肺癌临床基因组分析的快速综合方法
- 批准号:
10613055 - 财政年份:2023
- 资助金额:
$ 26.15万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards an inclusive genomic risk classification for acute myeloid leukemia (AML)
迈向急性髓系白血病 (AML) 的包容性基因组风险分类
- 批准号:
10752188 - 财政年份:2023
- 资助金额:
$ 26.15万 - 项目类别:
Machine learning with immunogenetics for the prediction of hematopoietic cell transplant outcomes
机器学习与免疫遗传学预测造血细胞移植结果
- 批准号:
10322105 - 财政年份:2021
- 资助金额:
$ 26.15万 - 项目类别:
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10506326 - 财政年份:2021
- 资助金额:
$ 26.15万 - 项目类别:
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10672974 - 财政年份:2021
- 资助金额:
$ 26.15万 - 项目类别:
Machine learning with immunogenetics for the prediction of hematopoietic cell transplant outcomes
机器学习与免疫遗传学预测造血细胞移植结果
- 批准号:
10534187 - 财政年份:2021
- 资助金额:
$ 26.15万 - 项目类别: