Whole Genome Sequencing for Genomic Evaluation and Risk Stratification of Patients with Myelodysplastic Syndromes
全基因组测序用于骨髓增生异常综合征患者的基因组评估和风险分层
基本信息
- 批准号:10506155
- 负责人:
- 金额:$ 26.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAffectAlgorithmsAneuploidyAspirate substanceBiological AssayBone MarrowBone Marrow CellsBone Marrow DiseasesBone marrow failureCLIA certifiedCharacteristicsChromosome DeletionChromosome abnormalityClinicalClinical TrialsClinical assessmentsCytogenetic AnalysisCytogeneticsDNA Sequence AlterationDetectionDiagnosisDiagnosticDisadvantagedDiseaseDysmyelopoietic SyndromesEnrollmentEvaluationEventFailureFrequenciesFutureGeneticGenetic RiskGenomicsGoalsInformaticsInterventionKaryotype determination procedureLaboratoriesLoss of HeterozygosityMalignant NeoplasmsMarrowMetaphaseMethodsMorbidity - disease rateMutationMyeloproliferative diseaseNatural HistoryOutcomePatientsPerformancePersonsPrecision therapeuticsProspective cohortResolutionRiskRisk AssessmentSamplingSecondary acute myeloid leukemiaSecondary toStem cell transplantTestingVariantaggressive therapyclinically relevantcohortdetection limitgene panelgenetic profilinggenetic risk assessmentgenome sequencinghuman old age (65+)improvedin silicomortalitypatient stratificationpredict clinical outcomeprediction algorithmprognosticprospectiveresearch clinical testingrisk predictionrisk stratificationsuccesstumorwhole genome
项目摘要
The goal of this proposal is to improve genetic profiling and risk stratification for patients with
myelodysplastic syndromes (MDS) using clinical whole-genome sequencing. MDS is a heterogenous
group of clonal bone marrow disorders that are often fatal due to marrow failure or progression to acute myeloid
leukemia (AML). Accurate prediction progression risk is therefore critical for the management of MDS patients
in order to prolong survival and minimize the potential for morbidity and mortality associated with more
aggressive treatments. Cytogenetic analysis of bone marrow cells from MDS patients via metaphase karyotyping
is an essential component of MDS risk assessment algorithms, and is used to detect chromosomal deletions,
duplications, and aneuploidies that are associated with differential clinical outcomes. Although karyotyping has
been used effectively for decades, it has several disadvantages. These include low genomic resolution and high
failure rates that can result in incomplete genetic risk profiles for some patients. We recently developed and
validated ChromoSeq, a robust CAP/CLIA-compliant whole-genome sequencing (WGS) assay for genetic
profiling of patients with myeloid malignancies. We showed that this method was 100% sensitivity for clinically
relevant cytogenetic abnormalities in AML and identified additional cytogenetic events in up to 25% of patients
that were not detected by standard cytogenetics. These findings included new risk-defining chromosomal
abnormalities in almost 15% of patients, which resulted in better prediction of clinical outcomes. Although MDS
and AML are closely related diseases that share many features, the genomic characteristics and cellular
composition of MDS is distinct. In addition, the use of ChromoSeq results to form existing MDS risk groups has
not been clinically validated. We hypothesize that optimization of the ChromoSeq whole-genome
sequencing assay for MDS samples will improve the accuracy of genetic profiling and risk stratification
of MDS patients. Here we propose to use a combination of retrospective and prospective clinical MDS samples
to validate ChromoSeq for genetic profiling and risk assessment in MDS patients. We will first use retrospective
MDS samples to optimize and validate our existing CAP/CLIA-compliant ChromoSeq WGS assay to improve the
detection of low frequency mutations, copy number alterations (CNAs) and copy neutral loss of heterozygosity
(CNLOH), which are common in MDS (Aim 1; UH2 component). We will then use a prospective MDS cohort to
establish the clinical validity of ChromoSeq assay for genomic profiling and risk assessment of MDS patients.
This project will expand the use of the CAP/CLIA-compliant ChromoSeq assay to MDS samples so that it may
be used for future interventional clinical trials and routine clinical testing of patients with this malignancy.
该提案的目标是改善患有以下疾病的患者的基因分析和风险分层
使用临床全基因组测序治疗骨髓增生异常综合征(MDS)。 MDS 是一种异质
一组克隆性骨髓疾病,由于骨髓衰竭或进展为急性髓系疾病,通常是致命的
白血病(AML)。因此,准确预测进展风险对于 MDS 患者的管理至关重要
为了延长生存并尽量减少与更多相关的发病率和死亡率的可能性
积极的治疗。通过中期核型分析对MDS患者骨髓细胞进行细胞遗传学分析
是 MDS 风险评估算法的重要组成部分,用于检测染色体缺失,
与不同临床结果相关的重复和非整倍体。尽管核型分析已
虽然它已经有效使用了几十年,但它有几个缺点。这些包括低基因组分辨率和高
失败率可能导致某些患者的遗传风险概况不完整。我们最近开发并
经过验证的 ChromoSeq,一种强大的符合 CAP/CLIA 标准的全基因组测序 (WGS) 检测方法,用于遗传检测
骨髓恶性肿瘤患者的概况分析。我们证明该方法在临床上的敏感性为 100%
AML 中的相关细胞遗传学异常,并在高达 25% 的患者中发现了其他细胞遗传学事件
标准细胞遗传学未检测到。这些发现包括新的风险定义染色体
近 15% 的患者出现异常,从而更好地预测临床结果。虽然MDS
和 AML 是密切相关的疾病,它们具有许多共同的特征、基因组特征和细胞特征
MDS 的组成是不同的。此外,使用 ChromoSeq 结果形成现有的 MDS 风险组已
尚未经过临床验证。我们假设 ChromoSeq 全基因组的优化
MDS 样本测序分析将提高基因分析和风险分层的准确性
MDS 患者。在这里,我们建议结合使用回顾性和前瞻性临床 MDS 样本
验证 ChromoSeq 在 MDS 患者中的基因分析和风险评估。我们首先使用回顾法
MDS 样本用于优化和验证我们现有的符合 CAP/CLIA 标准的 ChromoSeq WGS 检测,以改进
检测低频突变、拷贝数改变 (CNA) 和杂合性的拷贝中性丢失
(CNLOH),这在 MDS 中很常见(目标 1;UH2 成分)。然后我们将使用前瞻性 MDS 队列来
确定 ChromoSeq 检测对 MDS 患者基因组分析和风险评估的临床有效性。
该项目将扩大符合 CAP/CLIA 标准的 ChromoSeq 检测在 MDS 样本中的使用,以便
可用于未来对该恶性肿瘤患者的介入临床试验和常规临床测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC J DUNCAVAGE其他文献
ERIC J DUNCAVAGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC J DUNCAVAGE', 18)}}的其他基金
Genome sequencing for evaluating the efficacy, specificity, and safety of human genome editing
用于评估人类基因组编辑的有效性、特异性和安全性的基因组测序
- 批准号:
10667893 - 财政年份:2023
- 资助金额:
$ 26.15万 - 项目类别:
A Rapid and Comprehensive Approach for Clinical Genomic Profiling in Lung Cancer
肺癌临床基因组分析的快速综合方法
- 批准号:
10613055 - 财政年份:2023
- 资助金额:
$ 26.15万 - 项目类别:
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Towards an inclusive genomic risk classification for acute myeloid leukemia (AML)
迈向急性髓系白血病 (AML) 的包容性基因组风险分类
- 批准号:
10752188 - 财政年份:2023
- 资助金额:
$ 26.15万 - 项目类别:
Machine learning with immunogenetics for the prediction of hematopoietic cell transplant outcomes
机器学习与免疫遗传学预测造血细胞移植结果
- 批准号:
10322105 - 财政年份:2021
- 资助金额:
$ 26.15万 - 项目类别:
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10506326 - 财政年份:2021
- 资助金额:
$ 26.15万 - 项目类别:
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10672974 - 财政年份:2021
- 资助金额:
$ 26.15万 - 项目类别:
Machine learning with immunogenetics for the prediction of hematopoietic cell transplant outcomes
机器学习与免疫遗传学预测造血细胞移植结果
- 批准号:
10534187 - 财政年份:2021
- 资助金额:
$ 26.15万 - 项目类别: