Mechano-Instructive Material Inclusions to Direct Meniscus Repair
用于直接半月板修复的力学指导材料夹杂物
基本信息
- 批准号:10534807
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdhesivesAdultAnimal ModelApoptosisAreaBehaviorBiochemicalBiocompatible MaterialsBiomechanicsBiophysicsBioreactorsCaringCartilageCell AdhesionCell Culture TechniquesCell DensityCell ProliferationCell physiologyCell-Matrix JunctionCellsChronicCicatrixClinicClinicalCollaborationsCollagenComplexCuesDepositionDevelopmentDiffusionDiseaseDoctor of PhilosophyEncapsulatedEngineeringEnvironmentFormulationFosteringGelGoalsHealthHyaluronic AcidHydrogelsImageIn VitroInfiltrationInjectionsInjuryInterventionKneeLabelLightLongevityMechanicsMediatingMedical centerMeniscus structure of jointMentorsMentorshipMethodsMicrofluidic MicrochipsMiniature SwineModelingModulusMolecular Biology TechniquesMultiscale MechanicsNude RatsOrthopedicsPainPathologyPatientsPennsylvaniaPeptidesPhiladelphiaPilot ProjectsPredispositionPrevalenceProductionProliferatingPropertyQuality of lifeResearchScientistSiteStressSurfaceTimeTissue EngineeringTissuesTrainingTranslatingTranslationsUnited States Department of Veterans AffairsUniversitiesWeight-Bearing stateWorkattenuationcareercareer developmentcell dimensioncell motilityclinical translationclinically relevantcostcost effectivecrosslinkdensitydesigndisabilityextracellularfabricationfortificationhealingimprovedin vivojoint destructionmechanical propertiesmechanical signalmeniscal tearmeniscus injurymigrationnew technologynovelnovel strategiesnovel therapeuticsparticleprofessorrecruitrepairedresearch clinical testingsenescenceskillssubcutaneoustargeted treatmenttissue regenerationwoundwound healing
项目摘要
Career Development and Mentoring: My long-term goals are to become an independent
scientist/professor at a Veterans Affairs Medical Center in proximity to academic universities for expanded
scientific collaborations and to develop and translate novel therapeutics for improved treatment of problematic
orthopaedic injuries. In my doctoral training, I fine-tuned my skillset in small animal models, multi-scale
biomechanics, and molecular biology techniques (e.g., microarrays). From the proposed Research Plan, I will
expand my research skillset by answering fundamental questions about meniscus repair and cell-material
interactions both in vitro and in vivo using large animal models. Additionally, with strong support from my
Mentor, Dr. Robert Mauck, PhD, and my Co-Mentors, Dr. Carla Scanzello, MD, PhD, Dr. Jason Burdick, PhD,
Dr. Miltiadis Zgonis, MD, Dr. Lin Han, PhD, and Dr. Daeyeon Lee, PhD, I will gain diverse mentorship for my
career development, networking, and research on meniscus pathology, large animal models, and biomaterial
synthesis.
Research Plan: The extracellular microenvironment of meniscus cells determines their fate and health.
Meniscus injury and disease disrupt the native structural and mechanical properties of the microenvironment,
leading to loss of tissue function and chronic pathology. To restore meniscus function, this proposal designs
materials that not only restore the native microenvironment at time zero but also recruit cells and subsequently
promote matrix production following meniscus injury. For this, we utilize material-directed strategies to deliver
biophysical cues that beneficially tailor meniscus cell mechanobiology and behavior. Specifically, we first
develop methods to establish stiffness gradients at the wound edge using infiltration of peptide-modified
hyaluronic acid hydrogels to increase 3-dimensional cell mechano-signaling, motility, and contractility (e.g., 3D
durotaxis). Next, once cells have migrated to the wound margin, we promote matrix production via presentation
of transient mechanical cues as well as increased surface area for cell attachment using cell-adhesive and -
degradable micro-inclusions of tunable size and stiffness encapsulated within the bulk hydrogel. Finally, we
carry out pilot studies to establish the efficacy of these new technologies in a large animal model. Completion
of this work will establish a novel treatment for otherwise irreparable meniscus injuries via a set of mechano-
instructive materials to reestablish the cell microenvironment with high feasibility for rapid clinical translation
and broad implications for meniscus mechanobiology and repair. In summary, my proposed research plan,
mentoring plan, as wells as the outstanding environment and facilities at the Philadelphia VA Medical Center
and the University of Pennsylvania will help me to accomplish my career plans to be a successful VA-based
independent scientist.
职业发展和指导:我的长期目标是成为独立的目标
靠近学术大学的退伍军人事务医学中心的科学家/教授
科学合作并开发和翻译新颖的治疗剂,以改善问题的治疗
骨科受伤。在我的博士培训中,我在小动物模型中微调了我的技能,多尺度
生物力学和分子生物学技术(例如,微阵列)。从拟议的研究计划中,我将
通过回答有关半月板修复和细胞材料的基本问题来扩展我的研究技能
使用大动物模型在体外和体内相互作用。此外,在我的强烈支持下
导师,博士罗伯特·马克(Robert Mauck)博士和我的联合给予者,医学博士Carla Scanzello博士,博士学位,Jason Burdick博士
医学博士Miltiadis Zgonis博士,博士Lin Han博士和Daeyeon Lee博士,我将为我的多样化指导
关于半月板病理学,大型动物模型和生物材料的职业发展,网络和研究
合成。
研究计划:半月板细胞的细胞外微环境决定了它们的命运和健康。
半月板损伤和疾病破坏了微环境的天然结构和机械特性,
导致组织功能和慢性病理的丧失。为了恢复半月板功能,该建议设计
材料不仅在时间零时恢复天然微环境,还可以募集细胞,然后招募细胞
半月板损伤后促进基质产生。为此,我们利用指导的策略来交付
有益地量身定制的弯月板细胞机械生物学和行为的生物物理提示。具体来说,我们首先
开发使用肽修饰的浸润在伤口边缘建立刚度梯度的方法
透明质酸水凝胶增加3维细胞机械信号,运动性和收缩性(例如3D
Durotaxis)。接下来,一旦细胞迁移到伤口缘,我们通过介绍促进基质产生
瞬态机械提示以及使用细胞粘附性和 -
可调尺寸和刚度的可降解微包含在大体水凝胶中封装。最后,我们
进行试点研究,以在大型动物模型中建立这些新技术的功效。完成
这项工作将建立一种新的治疗方法
具有较高可行性快速临床翻译的高可行性重新建立细胞微环境的指导性材料
以及对半月板机械生物学和修复的广泛影响。总而言之,我提出的研究计划,
指导计划,以及费城VA医疗中心的杰出环境和设施
宾夕法尼亚大学将帮助我完成我的职业计划,成为成功的基于VA
独立科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RYAN C LOCKE其他文献
RYAN C LOCKE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
-- - 项目类别: