Project 2: Transcriptional Dynamics and Temporal Reprogramming During Radiation Treatment
项目 2:放射治疗期间的转录动力学和时间重编程
基本信息
- 批准号:10526304
- 负责人:
- 金额:$ 19.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-14 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffectAlternative TherapiesAntibodiesAntibody-drug conjugatesAntineoplastic AgentsBasic ScienceBehaviorBioinformaticsBiologicalBiological AssayBiopsyBladderCancer PatientCell LineCellsCisplatinClinicClinicalCombined Modality TherapyCytologyDataDecision MakingDisciplineDiseaseEvolutionFailureFrequenciesFundingGenetic TranscriptionGenomicsGleanHead and Neck Squamous Cell CarcinomaHead and neck structureImageImmune checkpoint inhibitorImmunotherapyIn VitroInterventionInvestigationKnowledgeMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of urinary bladderMapsMeasuresMedicalMedical OncologyModalityModernizationModificationMolecularMutationNatureNivolumabOutcomePathway interactionsPatient-Focused OutcomesPatientsPatternPelvisPharmacologic SubstancePhase TransitionPhysicsPlayPositron-Emission TomographyPrediction of Response to TherapyPrimary NeoplasmRadiationRadiation Dose UnitRadiation OncologyRadiation therapyRadiobiologyRefractoryRegimenResistanceRoleSalivaSamplingSiteSpecificityStructureTechniquesTechnologyThe Cancer Genome AtlasTherapeuticTimeTranslatingTranslationsTreatment EfficacyTreatment FailureTumor TissueUrineVariantactionable mutationarmbasecell typechemoradiationchemotherapycohortcombinatorialcomputer sciencecone-beam computed tomographycytotoxicdensityexperiencegenetic signaturehuman genome sequencingin vivoindividual patientinsightinterestnovelpersonalized medicinephase II trialradiation effectradiation responseradiomicsresponsestandard of caresuccesssynergismtargeted treatmenttranscriptomicstreatment choicetreatment responsetumortumor DNA
项目摘要
SUMMARY
Radiation therapy (RT) is the single most utilized anti-cancer agent; nearly 70% of all cancer patients will receive
radiation at some point in their cancer journey, and RT plays a crucial role in almost half of all cancer cures. The
sequencing of the human genome, completed nearly 20 years ago, followed by the large scale cancer
sequencing effort in The Cancer Genome Atlas (TCGA) have provided an unprecedented understanding of
cancers in the primary and metastatic setting. In those same years, medical oncology has undergone three major
phase transitions: targeted therapies have changed the way we think many diseases with specific actionable
mutations; immunotherapy has revolutionized the treatment of many of those without; and antibody-drug
conjugates have increased the specificity of our cytotoxics. RT treatment decision making, however, has not
seen these same changes from biological influences, instead having relied on advances in medical physics and
computer science to drive our advances. While the number of trials has ballooned in radiation oncology of late,
spurred on by encouragement, and funding, from pharmaceutical companies interested in the synergy between
novel (and profitable) compounds in the form of immune checkpoint inhibitors and antibody-drug-conjugates,
with radiation, our understanding of the relative benefits and best choices for individual patients has not seen
the same increases. In fact, we have struggled to parse out the differences between these novel combinations
and standard chemoradiotherapy in phase II trials, largely because of the combinatorial nature of our trials, and
the sheer number of open questions. In this project, we seek to make headway toward personalizing radiation
therapy treatment choices. Using our experience in using gene signatures to predict individual patient radiation
benefit, together with expertise in radiomics and genomics, we will use 4 carefully crafted cohorts to dissect out
the relative contribution of radiation, standard chemotherapy, the immune checkpoint inhibitor Nivolumab and
the antibody-drug conjugate Sacituzumab govitecan. Having chosen two disease sites which benefit from high
(but not uniform) cure rates with standard cisplatin-radiation combination therapy (bladder and head and neck),
we have structured two investigational trials to compare to standard therapy. In each trial (bladder, with SG+RT,
and HNSCC with ICI+RT) we will compare and contrast the temporal changes in tumor transcriptomic and
mutational state change in primary tumor tissue and surrogates from shed cells and circulating tumor DNA. The
‘ground truth’ of these genomics through time will be married to high temporal density radiomics features to allow
for translation and generalization to all patients treated with modern technique. Through these complimentary -
omic modalities, we aim to leverage our experience in creating signatures of therapeutic response to admit
personalized treatment choice in the up front setting, and opportunities to change course using real-time
information gleaned from daily imaging. To round out the project we will perform in vitro experimental evolution
to uncover the molecular mechanisms underpinning therapeutic success and failure in each modality, and to
derive signatures of alternative therapy sensitivity.
概括
放射治疗 (RT) 是最常用的抗癌药物,近 70% 的癌症患者都会接受放射治疗;
在癌症治疗过程中的某个阶段,放射治疗在几乎一半的癌症治疗中发挥着至关重要的作用。
人类基因组测序,近 20 年前完成,随后是大规模癌症
癌症基因组图谱 (TCGA) 中的测序工作提供了前所未有的了解
在那些年里,肿瘤内科经历了三个主要的变化。
相变:靶向治疗改变了我们对许多疾病的看法,具有特定的可操作性
突变;免疫疗法彻底改变了许多没有抗体药物的治疗方法;
然而,缀合物增加了我们的细胞毒素治疗决策的特异性。
看到了生物影响带来的这些相同的变化,而不是依赖于医学物理学的进步和
虽然最近放射肿瘤学的试验数量激增,
受到对两者之间的协同作用感兴趣的制药公司的鼓励和资助的推动
免疫检查点抑制剂和抗体药物偶联物形式的新型(且有利可图)化合物,
对于放射治疗,我们对个体患者的相对益处和最佳选择的了解还没有看到
事实上,我们一直在努力解析这些新颖组合之间的差异。
和 II 期试验中的标准放化疗,主要是因为我们试验的组合性质,以及
在这个项目中,我们寻求在个性化辐射方面取得进展。
利用我们在使用基因特征来预测个体患者辐射方面的经验。
结合放射组学和基因组学的专业知识,我们将使用 4 个精心设计的队列来剖析
放疗、标准化疗、免疫检查点抑制剂纳武单抗和
抗体-药物缀合物 Sacituzumab govitecan 选择了两个受益于高水平的疾病部位。
(但不统一)标准顺铂放射联合治疗(膀胱和头颈)的治愈率,
我们设计了两项研究试验来与标准疗法进行比较(膀胱,SG+RT,
和 HNSCC 与 ICI+RT),我们将比较和对比肿瘤转录组和 HNSCC 的时间变化
原发肿瘤组织以及脱落细胞和循环肿瘤 DNA 的替代物中的突变状态变化。
随着时间的推移,这些基因组学的“基本事实”将与高时间密度放射组学特征结合起来,以允许
通过这些补充,向所有接受现代技术治疗的患者进行翻译和推广。
组学模式,我们的目标是利用我们在创建治疗反应特征方面的经验来承认
预先设置的个性化治疗选择,以及使用实时改变疗程的机会
从日常成像中收集的信息为了完善该项目,我们将进行体外实验进化。
揭示支撑每种治疗方式成功和失败的分子机制,并
得出替代疗法敏感性的特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Gardinier Scott其他文献
Jacob Gardinier Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Gardinier Scott', 18)}}的其他基金
Project 2: Transcriptional Dynamics and Temporal Reprogramming During Radiation Treatment
项目 2:放射治疗期间的转录动力学和时间重编程
- 批准号:
10704714 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10737854 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10381296 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10064023 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10528617 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10533732 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10524202 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10312107 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Diagnostic and treatment landscape of pyoderma gangrenosum
坏疽性脓皮病的诊治现状
- 批准号:
10732688 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Project 2: Transcriptional Dynamics and Temporal Reprogramming During Radiation Treatment
项目 2:放射治疗期间的转录动力学和时间重编程
- 批准号:
10704714 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Data-driven QSP software for personalized colon cancer treatment
用于个性化结肠癌治疗的数据驱动 QSP 软件
- 批准号:
10227447 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
MCJ function in mouse mammary tumor properties
MCJ 在小鼠乳腺肿瘤特性中的功能
- 批准号:
7807612 - 财政年份:2008
- 资助金额:
$ 19.58万 - 项目类别: