Novel Optical Imaging Approach to Study Neurovascular Coupling System

研究神经血管耦合系统的新型光学成像方法

基本信息

  • 批准号:
    10528336
  • 负责人:
  • 金额:
    $ 43.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-21 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Understanding the relationship between neural activity and Blood-brain barrier (BBB) permeability is important to integrate our knowledge of neurovascular coupling system. Although much effort is focused in understanding the underlying mechanisms that regulate blood flow in response to neural activity5, little is known about how neural activity regulates tissue perfusion. Direct in vivo measurements of Ca2+ dynamics in cerebral blood vessel cells and quantification of BBB permeability have been difficult largely due to technical limitation. Researchers have been using bulky fluorescence-labeled solutes for conventional studies on BBB permeability. However, bulky fluorescence labeling perturbs the structural and functional properties of the biomolecules and suffered from photo bleaching. For these reasons, tiny Raman tagged molecules combined with SRS imaging is ideal for studying BBB permeability in vivo. Here we propose a novel optical imaging approach to determine the relationship between neural activity and BBB permeability in vivo. The main thrust of this proposal is to use a combination of bioorthogonal probed stimulated Raman scattering (SRS), multi-photon fluorescence, and mouse genetics to obtain simultaneous measurements of Ca2+ activity and BBB permeability. Vascular endothelial cells will be labeled with a genetically encoded calcium indicator while bioorthogonal-tagged molecules with specific vibrational modes will be injected into the brain vasculature to measure the BBB permeability, and the relationship between calcium dynamics and permeability of the BBB will be studied. Successful completion of the aims described in this proposal will enable a novel framework for future mechanistic studies of in vivo BBB permeability in animal models for blood vessel development and vasculature diseases.
了解神经活动与血脑屏障 (BBB) 通透性之间的关系 整合我们对神经血管耦合系统的知识非常重要。虽然付出了很多努力 专注于了解调节血流以响应的潜在机制 神经活动5,人们对神经活动如何调节组织灌注知之甚少。直接体内 脑血管细胞中 Ca2+ 动力学的测量和 BBB 的定量 由于技术限制,渗透性一直很困难。研究人员一直在使用 用于 BBB 渗透性常规研究的大体积荧光标记溶质。然而体积庞大 荧光标记扰乱生物分子的结构和功能特性 遭受光漂白。由于这些原因,微小的拉曼标记分子与 SRS 成像是研究体内 BBB 通透性的理想选择。在这里,我们提出了一种新颖的光学 成像方法确定神经活动与血脑屏障通透性之间的关系 体内。该提案的主旨是使用生物正交探测刺激的组合 拉曼散射 (SRS)、多光子荧光和小鼠遗传学同时获得 Ca2+ 活性和 BBB 渗透性的测量。血管内皮细胞将被标记 具有基因编码的钙指示剂,而具有特定生物正交标记的分子 振动模式将被注入脑血管系统以测量 BBB 渗透性, 研究钙动力学与血脑屏障渗透性之间的关系。 成功完成本提案中描述的目标将为以下领域提供一个新的框架: 血管动物模型中体内血脑屏障通透性的未来机制研究 发育和脉管系统疾病。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bioorthogonal Stimulated Raman Scattering Imaging Uncovers Lipid Metabolic Dynamics in Drosophila Brain During Aging.
  • DOI:
    10.1089/genbio.2023.0017
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yajuan Li;Phyllis Chang;Shriya Sankaran;Hongje Jang;Yuhang Nie;Audrey Zeng;Sahran Hussain;Jane Y. Wu;Xu-Qiao Chen;Lingyan Shi
  • 通讯作者:
    Yajuan Li;Phyllis Chang;Shriya Sankaran;Hongje Jang;Yuhang Nie;Audrey Zeng;Sahran Hussain;Jane Y. Wu;Xu-Qiao Chen;Lingyan Shi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lingyan Shi其他文献

Lingyan Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lingyan Shi', 18)}}的其他基金

Sugar Probed SRS Volumetric imaging of Metabolic Activities
代谢活动的糖探针 SRS 体积成像
  • 批准号:
    10639208
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:

相似国自然基金

HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
  • 批准号:
    82301231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
  • 批准号:
    82301190
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
  • 批准号:
    52375281
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
  • 批准号:
    82301213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
叶黄素调控脂代谢紊乱所致年龄相关性黄斑病变的血-视网膜屏障损伤机制研究
  • 批准号:
    82373570
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
  • 批准号:
    10590033
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
  • 批准号:
    10825287
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
  • 批准号:
    10465010
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
  • 批准号:
    10556087
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
  • 批准号:
    10557547
  • 财政年份:
    2023
  • 资助金额:
    $ 43.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了