Regulation of the physiology and function of the digestive vacuole in Toxoplasma gondii
弓形虫消化液泡生理和功能的调节
基本信息
- 批准号:10530610
- 负责人:
- 金额:$ 36.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-10 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAcuteAffectAmino AcidsAntibioticsAutophagosomeChloroquineChloroquine resistanceChronicCommunicable DiseasesConsumptionDataDefectDevelopmentDigestive PhysiologyDiseaseEndocytosisEnvironmentExhibitsFamilyFutureGenetic TranscriptionGlutathioneGoalsGrowthHumanImmune systemImmunocompromised HostIn VitroInfectionIngestionKnowledgeLearningLysosomesMalariaMeasuresMediatingModelingMolecularMorphologyMulti-Drug ResistanceMultidrug Resistance GeneNutrientOrganellesOrganismOrthologous GeneOsmotic PressureOxidation-ReductionParasite ControlParasitesParasitic infectionPathogenesisPeptide HydrolasesPersonsPhenotypePhysiologicalPhysiologyPlantsPlasmodiumPlasmodium falciparumPlayPopulationProteinsProteolysisRegulationReportingRepressionResearchRoleRouteSolidSwellingSystemTeratogensTestingTherapeutic InterventionTimeToxoplasmaToxoplasma gondiiToxoplasmosisTranscriptVacuoleVirulenceWorkYeastsZoonosesacute infectionchronic infectionfoodbornein vivoinnovationinsightmembermouse modelmutantnew therapeutic targetnovel therapeuticsnutrient metabolismpathogenproteoliposomesside effectsolutetherapeutic targettransmission process
项目摘要
PROJECT SUMMARY/ABSTRACT
Toxoplasma gondii with the ability to use foodborne, zoonotic, and congenital routes of transmission is an
apicomplexan parasite that can cause severe infectious disease in the immunocompromised human population.
A few antibiotics are commercially available to treat Toxoplasma infections. However, their strong side effects
and teratogenicity limit their use in certain human populations. Inhibition of fundamental nutrient metabolism
specific to this parasite will define new drug targets and assist the development of novel drugs to manage T.
gondii infection.
Our previous studies revealed that Toxoplasma encodes an ortholog of Plasmodium chloroquine resistance
transporter (TgCRT), and localized it in the digestive vacuole, termed the Vacuolar Compartment/Plant-Like
Vacuole (VAC/PLV, VAC hereafter). Our preliminary data found that the TgCRT-deficient parasites swelled their
VACs ~15-fold. These results led to our central hypotheses: (1) the TgCRT serves as a polyspecific transporter
to regulate the VAC physiology and function in Toxoplasma, and (2) the TgCRT cooperates with a multidrug
resistance transporter-like protein in the VAC to mediate nutrient export, thereby adjusting the microenvironment
within the VAC. Towards these hypotheses, we have revealed that the swollen VAC disrupts the parasite’s
endolysosomal system and decreases transcript and protein abundances of VAC-associated proteases. We
discovered that inhibition of proteolysis within the VAC shrinks its swollen phenotype in TgCRT-null mutant. We
have also identified that a Toxoplasma ortholog of Plasmodium multidrug resistance transporter (TgMDR) is
localized in the VAC and significantly increased at the level of transcription in the parasites when TgCRT is
absent. Last, we determined that TgCRT transports chloroquine by heterologous expression of TgCRT in yeast,
suggesting that TgCRT is indeed a functional transporter and providing an amenable system to understand the
native functions of TgCRT and other VAC-localizing transporters. Guided by our compelling preliminary studies,
we propose three specific aims to characterize the native functions of TgCRT and TgMDR, and how they
functionally interact together to regulate VAC physiology and function by serving as nutrient transporters: (1)
Quantify the physiological environment within the VAC; (2) Measure the transport of small nutrient solutes by
CRT; and (3) Determine the functional relationship between TgCRT and TgMDR in the regulation of the VAC
morphology and physiology.
Our proposed research will broadly impact the field by characterizing the molecular mechanisms by which
Toxoplasma parasites regulate the physiology and function of their digestive vacuoles. Our studies will also help
comprehend the native functions of TgCRT and TgMDR, and such knowledge can be generalized to expand
understanding of their orthologs in other apicomplexan parasites and organisms.
项目摘要/摘要
具有使用食源性,人畜共患病和先天性传播途径的弓形虫弓形虫是一种
免疫受损人群中可能引起严重传染病的apicomplexan寄生虫。
商业上可以使用一些抗生素来治疗毒质量感染。但是,它们的副作用很强
变性性限制了它们在某些人群中的使用。抑制基本营养代谢
该寄生虫的特异性将定义新的药物靶标,并帮助开发新的药物来管理T。
Gondii感染。
我们先前的研究表明,毒质量编码氯喹抗性的直系同源
转运蛋白(TGCRT),并将其定位在消化液真空中,称为液泡隔室/植物样
液泡(vac/plv,vac,selter)。我们的初步数据发现,TGCRT缺陷寄生虫膨胀了
VACS 〜15倍。这些结果导致了我们的中心假设:(1)TGCRT用作多性转运蛋白
调节弓形虫的VAC生理学和功能,(2)TGCRT与多药合作
VAC中的抗性转运蛋白样蛋白介导营养出口,从而调节微环境
在VAC内。针对这些假设,我们揭示了肿胀的Vac破坏了寄生虫的
内溶性系统并降低与VAC相关蛋白酶的转录本和蛋白质丰度。我们
发现VAC中抑制蛋白水解会在TGCRT-NULL突变体中收缩其肿胀的表型。我们
还已经确定了疟原虫多药耐药性转运蛋白(TGMDR)的毒品直系同源物为
定位于VAC中,在TGCRT为寄生虫的转录水平上显着增加
缺席的。最后,我们确定TGCRT通过TGCRT在酵母中的异源表达传递氯喹,
表明TGCRT确实是一种功能性转运蛋白,并提供了一个可正常的系统来理解
TGCRT和其他VAC-定位转运蛋白的天然功能。在我们引人入胜的初步研究的指导下
我们提出了三个特定的目的,以表征TGCRT和TGMDR的天然功能,以及它们如何
在功能上相互作用以通过作为营养转运蛋白来调节VAC生理和功能:(1)
量化VAC内的物理环境; (2)测量小营养溶液的运输
CRT; (3)确定在VAC调节中TGCRT和TGMDR之间的功能关系
形态和生理学。
我们提出的研究将通过表征分子机制来广泛影响该领域
弓形虫寄生虫调节其消化液的生理和功能。我们的研究也会有所帮助
理解TGCRT和TGMDR的本地功能,并且可以将这些知识推广到扩展
在其他Apicomplexan寄生虫和生物体中了解它们的直系同源物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhicheng Dou其他文献
Zhicheng Dou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhicheng Dou', 18)}}的其他基金
Regulation of the physiology and function of the digestive vacuole in Toxoplasma gondii
弓形虫消化液泡生理和功能的调节
- 批准号:
10304922 - 财政年份:2019
- 资助金额:
$ 36.62万 - 项目类别:
Regulation of the physiology and function of the digestive vacuole in Toxoplasma gondii
弓形虫消化液泡生理和功能的调节
- 批准号:
9885048 - 财政年份:2019
- 资助金额:
$ 36.62万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
- 批准号:82302418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人群mtDNA空间异质性对急性高原反应发病的影响机制研究
- 批准号:42377466
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Glomerular and Tubular Function in the Recovering Kidney
肾脏恢复中的肾小球和肾小管功能
- 批准号:
10587898 - 财政年份:2023
- 资助金额:
$ 36.62万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 36.62万 - 项目类别:
Optimizing Small Molecule Mechanomimetics to Treat Age-related Osteoporosis.
优化小分子力学模拟治疗与年龄相关的骨质疏松症。
- 批准号:
10807685 - 财政年份:2023
- 资助金额:
$ 36.62万 - 项目类别:
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 36.62万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 36.62万 - 项目类别: