Experimental and computational analysis of mechanisms of mitochondrial-cellular ROS crosstalk in the kidney in salt-sensitive hypertension
盐敏感性高血压肾脏线粒体-细胞 ROS 串扰机制的实验和计算分析
基本信息
- 批准号:10529290
- 负责人:
- 金额:$ 60.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:ATP Synthesis PathwayAdultAffectAfrican AmericanApicalApplications GrantsAsianBioenergeticsBlood PressureBlood VesselsCardiovascular DiseasesCell membraneCell physiologyCellsCerebrovascular DisordersComplexComputer AnalysisComputer ModelsConsumptionDahl Hypertensive RatsDataDevelopmentDietDiseaseEnvironmental Risk FactorEventExcretory functionExhibitsFoundationsGeneticGenetic EngineeringGrantHealthHeartHumanHydrogen PeroxideHypertensionInjury to KidneyKidneyKidney DiseasesKidney FailureKnock-outLaboratoriesLimb structureMeasurementMeasuresMembraneMembrane PotentialsMitochondriaMitochondrial ProteinsModelingMolecularMorbidity - disease rateNADHNADPH OxidaseOxidation-ReductionOxidative PhosphorylationOxidative StressOxygenPathologicPatientsPlayPopulationProcessProductionPublishingRattusReactive Oxygen SpeciesResistanceRespirationRisk FactorsRoleSignal TransductionSodium ChlorideSourceTestingThickTimeTubular formationabsorptionblood pressure reductioneffective therapyexperimental analysisexperimental studyfeedinghigh salt diethypertensivemitochondrial dysfunctionmitochondrial membranemitochondrial metabolismmodifiable riskmortalitynovelresponsesalt intakesalt sensitivesalt sensitive hypertensionsodium-potassium chloride cotransporter 2 proteintissue injuryuptake
项目摘要
PROJECT SUMMARY
Salt-sensitive hypertension is a significant health problem worldwide and there is a need to understand the
underlying molecular mechanisms to enable more effective treatments. The proposed studies are based on a
strong scientific foundation with experiments performed in our laboratories in Dahl salt-sensitive (SS) rats which
mimic the human condition of the disease. We have demonstrated that this form of hypertension is associated
with excess renal and vascular reactive oxygen species (ROS) production and reduced ability to excrete Na+.
Excess reabsorption occurs in the renal medullary thick ascending limb (mTAL) leading to greater reabsorption
of filtered Na+. Most relevant to this grant, SS rats exhibit a reduced ability to generate ATP through mitochondrial
respiration in the mTAL, the tubular segment that is responsible for reabsorption of nearly 25% of the filtered Na+
of the kidney. In this region of the kidney, there exists high levels of oxidative stress (excess ROS production)
emanating from both the mitochondria and cell membrane NADPH oxidases (NOX2 and NOX4). Two of the
major gaps that remain in this field are first a lack of mechanistic studies of cellular/mitochondrial metabolism,
and second, an absence of approaches to quantitatively evaluate the interdependence of the complex cellular
processes. We hypothesize that a high salt diet which increases the delivery of Na+ to the mTAL of SS rats
results in excess Na+ reabsorption and an increase of mTAL cytosolic [Na+] which stimulates mitochondrial ATP
synthesis and ROS production which in turn stimulates membrane NOXs (ROS-ROS crosstalk and vicious cycle)
leading to uncoupling of mitochondrial oxidative phosphorylation (OxPhos) and tissue injury. Aim 1 will utilize
intact microdissected mTAL to test the hypothesis in SS rats that high salt diet increases cytosolic [Na+] thereby
stimulating mitochondrial ROS production which in turn enhances greater uptake of Na+ into the cell and though
ROS-ROS crosstalk of mitochondria and membrane NOX2 and NOX4 which amplifies total intracellular ROS
production leading to OxPhos uncoupling. Contribution of membrane NOXs and mitochondrial ROS interactions
will be determined using novel genetically engineered knockout strains SSNox4KO and SSp67/Nox4DKO rats. Aim 2 will
determine the progression of the postulated bioenergetic events in isolated mitochondria of the kidney (both
outer medulla and cortex) of high salt fed SS rats. Progressive alterations of mitochondrial bioenergetics and
ROS production will be determined at four time points during the three weeks of high salt feeding. Aim 3 will
utilize the measured data-driven computational modeling to provide a quantitative, integrated, and mechanistic
framework that can predict the complex relationships existing between cellular oxygen utilization, energy
production, and oxidative stress in the kidney during the development of salt-sensitive hypertension.
项目摘要
对盐敏感的高血压是全球重大的健康问题,有必要了解
基本的分子机制可以实现更有效的治疗方法。拟议的研究基于
强大的科学基础,在我们在达尔盐敏感(SS)大鼠的实验室中进行的实验,该实验
模仿该疾病的人类状况。我们已经证明了这种高血压相关的形式
过量的肾脏和血管活性氧(ROS)产生以及排泄Na+的能力降低。
过量的重吸收发生在肾脏厚度上升的肢体(mTAL)中,导致更大的重吸收
过滤的Na+。与这笔赠款最相关的是,SS大鼠通过线粒体表现出降低的ATP的能力
MTAL中的呼吸,导致近25%过滤的Na+重新吸收的管状段
肾脏。在肾脏的这个区域中,存在高水平的氧化应激(ROS产生过多)
由线粒体和细胞膜纳德氧化酶(NOX2和NOX4)发出。两个
在该领域中仍然存在的主要差距首先缺乏细胞/线粒体代谢的机械研究,
其次,缺乏定量评估复杂细胞相互依赖的方法
过程。我们假设高盐饮食将Na+递送到SS大鼠的MTAL
导致过量的Na+重吸收和刺激线粒体ATP的MTAL胞质[Na+]的增加
合成和ROS产生又刺激膜NOX(ROS-ROS串扰和恶性循环)
导致线粒体氧化磷酸化(OXPHOS)和组织损伤的解偶联。 AIM 1将使用
完整的微解剖MTAL测试SS大鼠的假设,高盐饮食会增加胞质[NA+]
刺激线粒体ROS的产生,从而增强了Na+对细胞的更大摄取
线粒体和膜NOX2和NOX4的ROS-ROS串扰,它们放大了总细胞内ROS
产生导致Oxphos解偶联。膜NOX和线粒体ROS相互作用的贡献
将使用新型的基因敲除菌株SSNOX4KO和SSP67/NOX4DKO大鼠确定。 AIM 2意志
确定在肾脏的孤立线粒体中假定的生物能事件的进展(均
高盐喂SS大鼠的外髓质和皮质)。线粒体生物能学和
在高盐喂养的三周内,将在四个时间点确定ROS的产生。目标3意志
利用测量数据驱动的计算建模来提供定量,集成和机械的
可以预测细胞氧利用,能量之间存在的复杂关系的框架
在盐敏感高血压发展过程中,肾脏的产生和氧化应激。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allen W Cowley其他文献
Allen W Cowley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allen W Cowley', 18)}}的其他基金
Experimental and computational analysis of mechanisms of mitochondrial-cellular ROS crosstalk in the kidney in salt-sensitive hypertension
盐敏感性高血压肾脏线粒体-细胞 ROS 串扰机制的实验和计算分析
- 批准号:
10321663 - 财政年份:2021
- 资助金额:
$ 60.83万 - 项目类别:
How Can Precision Medicine be Applied to Temporomandibular Disorders and its Comorbidities?
精准医学如何应用于颞下颌关节疾病及其合并症?
- 批准号:
9193954 - 财政年份:2016
- 资助金额:
$ 60.83万 - 项目类别:
Role of NOX4 In Kidney Function In Salt-Sensitive Hypertension
NOX4 在盐敏感性高血压肾功能中的作用
- 批准号:
8886255 - 财政年份:2015
- 资助金额:
$ 60.83万 - 项目类别:
Role of NOX4 In Kidney Function In Salt-Sensitive Hypertension
NOX4 在盐敏感性高血压肾功能中的作用
- 批准号:
9444474 - 财政年份:2015
- 资助金额:
$ 60.83万 - 项目类别:
Genetics and Epigenetics - Temporomandibular Disorders and Related Overlapping Co
遗传学和表观遗传学 - 颞下颌疾病和相关重叠疾病
- 批准号:
8785556 - 财政年份:2014
- 资助金额:
$ 60.83万 - 项目类别:
Comorbid Chronic Pain Conditions - Mechanisms, Diagnosis and Treatments
慢性疼痛共病 - 机制、诊断和治疗
- 批准号:
8203961 - 财政年份:2011
- 资助金额:
$ 60.83万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
- 批准号:
10906528 - 财政年份:2023
- 资助金额:
$ 60.83万 - 项目类别:
Improving sarcopenia by targeting mitochondria
通过靶向线粒体改善肌肉减少症
- 批准号:
10736713 - 财政年份:2023
- 资助金额:
$ 60.83万 - 项目类别:
Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
- 批准号:
10342557 - 财政年份:2022
- 资助金额:
$ 60.83万 - 项目类别:
A novel mechanism of mitochondrial protein turnover in Complex I deficient mitochondrial cardiomyopathy
复合物 I 缺陷型线粒体心肌病中线粒体蛋白周转的新机制
- 批准号:
10708844 - 财政年份:2022
- 资助金额:
$ 60.83万 - 项目类别:
Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
- 批准号:
10543478 - 财政年份:2022
- 资助金额:
$ 60.83万 - 项目类别: