Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
基本信息
- 批准号:10342557
- 负责人:
- 金额:$ 31.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:ATP Synthesis PathwayAcetylationAcylationAcyltransferaseAdultAffectAgingBiochemistryBioenergeticsCardiacCardiac MyocytesCardiomyopathiesCell DeathCell physiologyCellsCellular biologyCommunicationDataDeacetylaseDefectDegenerative DisorderDevelopmentDiseaseEngineeringExcisionExhibitsFailureFibrosisFunctional disorderGoalsHeartHeart DiseasesHumanImpairmentIndividualLinkMass Spectrum AnalysisMediatingMetabolicMetabolismMitochondriaMitochondrial DiseasesMitochondrial ProteinsModelingModificationMusPathogenesisPathologyPathway interactionsPatternPhosphate CarriersPhysiologicalPhysiologyPlayPositioning AttributePost-Translational Protein ProcessingProcessProductionProteinsProteomicsRegulationResearchSignal PathwaySignal TransductionSirtuinsStressSystemTissue DifferentiationTissuesWorkarmbiological adaptation to stresscyclophilin Ddesigngene therapyin vivoin vivo Modelin vivo evaluationinnovationinsightmetabolomicsmitochondrial dysfunctionmitochondrial metabolismmitochondrial permeability transition poremouse modelnew therapeutic targetnoveloverexpressionpublic health relevanceresponsestressor
项目摘要
As critical regulators of cellular metabolism, mitochondria activate various pathways in response to stressors
(e.g., aging) and dysfunction (e.g., unfolded proteins). However, little is known about the in vivo pathways
mitochondria use to communicate impaired energy production. Mitochondrial energy dysfunction is a hallmark
of a range of degenerative diseases affecting tissues with high energy demands, thus understanding how
mitochondria respond to energy dysfunction and direct the cellular response to energetic crisis in vivo is critical
for the design of targeted strategies to ameliorate these diseases. Here, we will leverage a unique model of in
vivo mitochondrial energy impairment that we engineered by inducible deletion of the cardiac mitochondrial
phosphate carrier (SLC25A3) in adult mouse cardiomyocytes. This model offers a novel system to model
mitochondrial energy impairment in a terminally differentiated tissue with high energy demands. Intriguingly,
despite the cardiac disease exhibited by these mice, SLC25A3 deficiency does not engage canonical
mitochondrial energy dysfunction pathways like AMPK and ROS signaling, nor is cell death or fibrosis exhibited
by deficient hearts. Instead, loss of SLC25A3 in adult hearts causes a striking increase in mitochondria-specific
protein acylations, particularly acetylation and malonylation. Acylations are dynamic post-translational
modifications derived from metabolic intermediates and subject to removal by sirtuin deacylases. Importantly,
acylations harbor the potential to link metabolism to protein functional regulation, while altered acylation is
associated with disease pathogenesis. Our preliminary data suggest that, in particular, two aspects of the
acylome—the acetylome and the malonylome—are remodeled in response to mitochondrial energy
dysfunction. While the acylome is well known to regulate mitochondrial metabolism, our work suggests that the
converse is also possible: that mitochondrial energy dysfunction directs acylome remodeling. We hypothesize
that acylome modifications represent a mitochondria-intrinsic mechanism to coordinate the cellular response to
energy stress. Using the SLC25A3 deletion mice together with cell biology, biochemistry, proteomics, and
innovative in vivo gene therapy approaches, we will 1) identify the mechanisms underlying SLC25A3 deletion-
mediated acylome remodeling, 2) define how acylations regulate the mitochondrial permeability transition pore
cell death pathway, and 3) determine the physiological impact of aberrant acylations on the mitochondrial
energy-impaired heart. The proposed studies will provide novel insight on the link between mitochondrial
bioenergetics and acylome remodeling and position acylations as an arm of the mitochondrial stress response
that is activated upon mitochondrial energy dysfunction. Ultimately, identification of pathways regulating
mitochondrial dysfunction will facilitate the development of new therapies targeting mitochondrial energy
dysfunction in disease.
作为细胞代谢的关键调节者,线粒体激活各种途径以应对压力
(例如衰老)和功能障碍(例如未折叠蛋白质)然而,人们对体内途径知之甚少。
线粒体能量功能障碍是一个标志
一系列影响高能量需求组织的退行性疾病,从而了解如何
线粒体对能量功能障碍做出反应并指导细胞对体内能量危机的反应至关重要
在这里,我们将利用一种独特的模型来设计有针对性的策略来改善这些疾病。
我们通过诱导性缺失心脏线粒体来设计体内线粒体能量损伤
成年小鼠心肌细胞中的磷酸盐载体 (SLC25A3) 该模型提供了一种新的建模系统。
有趣的是,具有高能量需求的终末分化组织中的线粒体能量损伤。
尽管这些小鼠表现出心脏病,但 SLC25A3 缺陷并不涉及典型的
线粒体能量功能障碍途径,如 AMPK 和 ROS 信号传导,也没有表现出细胞死亡或纤维化
相反,成人心脏中 SLC25A3 的缺失会导致线粒体特异性显着增加。
蛋白质酰化,特别是乙酰化和丙二酰化是动态的翻译后。
源自代谢中间体的修饰并可被沉默调节蛋白脱酰酶去除。
酰化具有将代谢与蛋白质功能调节联系起来的潜力,而酰化是
我们的初步数据表明,特别是与疾病发病机制有关的两个方面。
酰基组(乙酰基组和丙二酰基组)根据线粒体能量进行重塑
虽然众所周知,酰基组可以调节线粒体代谢,但我们的工作表明,
相反的情况也是可能的:线粒体能量功能障碍指导酰基组重塑。
酰基组修饰代表了协调细胞响应的线粒体内在机制
使用 SLC25A3 缺失小鼠与细胞生物学、生物化学、蛋白质组学和
创新的体内基因治疗方法,我们将 1) 确定 SLC25A3 缺失的潜在机制-
介导的酰基组重塑,2) 定义酰化如何调节线粒体通透性过渡孔
细胞死亡途径,3) 确定异常酰化对线粒体的生理影响
拟议的研究将为线粒体之间的联系提供新的见解。
生物能量学和酰基组重塑以及定位酰化作为线粒体应激反应的一个分支
最终,在线粒体能量功能障碍时激活其调节途径。
线粒体功能障碍将促进针对线粒体能量的新疗法的开发
疾病中的功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Q. Kwong其他文献
Jennifer Q. Kwong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Q. Kwong', 18)}}的其他基金
Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
- 批准号:
10543478 - 财政年份:2022
- 资助金额:
$ 31.3万 - 项目类别:
相似国自然基金
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
高糖水平通过JUN乙酰化修饰上调NCAPD3促进结直肠癌发生的分子机制
- 批准号:82303250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
β-羟基丁酸介导NF-kB p65去乙酰化修饰在经腹功能性磁刺激治疗脊髓损伤后神经病理性疼痛中的机制研究
- 批准号:82302862
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ChREBP乙酰化介导脂肪酸代谢探讨“肝病及心”理论内涵及降脂消斑方干预研究
- 批准号:82374192
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
DEPDC5蛋白乙酰化修饰导致mTROC1的激活并促进骨肉瘤的恶性进展
- 批准号:82360472
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
- 批准号:
10524783 - 财政年份:2022
- 资助金额:
$ 31.3万 - 项目类别:
Anti-CRISPR-mediated Acylation and Bioreversible Esterification for Precision Genome Editing
用于精准基因组编辑的抗 CRISPR 介导的酰化和生物可逆酯化
- 批准号:
10657417 - 财政年份:2022
- 资助金额:
$ 31.3万 - 项目类别:
High Throughput Screen for Inhibitors of the YEATS2 Histone Acylation Reader
YEATS2 组蛋白酰化酶抑制剂的高通量筛选
- 批准号:
10389517 - 财政年份:2022
- 资助金额:
$ 31.3万 - 项目类别: