Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
基本信息
- 批准号:10525244
- 负责人:
- 金额:$ 38.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:Amacrine CellsArchitectureAreaAxonBedsCalciumCalcium SignalingCell physiologyCellsClinicalColorCouplingDataDendritesDetectionDevelopmentDiseaseElementsFunctional ImagingHumanImageInterneuronsLightLinkLocationMacacaMammalsMediatingMethodsModelingMonkeysMorphologyMotionMotion PerceptionMovementMusNeurobiologyOcular PhysiologyOryctolagus cuniculusOutcomeOutputPathway interactionsPhysiologicalPhysiologyPopulationPrimatesPropertyRadialResearchRetinaRoleSeriesStimulusStructureSynapsesTestingTimeTracerTreesVisionVision researchVisual Pathwayscell typecellular imagingfovea centralisganglion cellhigh resolution imagingimaging modalitymodel developmentneuromechanismnonhuman primatenovelpostsynapticpresynapticprogramsreceptive fieldreconstructionresponseretinal imagingsight restorationstarburststarburst amacrine cellsynaptic inhibitiontooltool developmentvisual neurosciencevisual processing
项目摘要
A major research challenge for neurobiology is to understand the neural mechanisms that give rise to an
extreme diversity of parallel visual pathways and ultimately the contributions that these pathways make to our
perception of motion, form and color. For motion perception the cell types, circuits and synaptic mechanisms
that mediate selectivity to the direction of moving stimuli have been intensively studied in the non-primate
mammal for decades and over a dozen distinct direction selective pathways are recognized in the mouse
retina together with growing evidence for similarly diverse underlying neural mechanisms. The great complexity
of the visual pathways found in the mouse is mirrored in the primate, yet surprisingly the abundant direction
selective ganglion cells have not been previously identified. The broad long-term objective of this new research
program is to elucidate for the first time the cell types, circuits, synaptic organization and underlying cellular
mechanisms for direction selectivity in the macaque monkey retina, as an ideal model for human visual
processing centered around the fovea. Our proposed research plan arises from a series of discoveries that
opens a door to the first detailed study of both the visual physiology and synaptic organization of direction
selective circuitry in the macaque retina. In preliminary studies we have identified the primate ON-OFF
direction selective ganglion cell as the recursive bistratified type and have developed new methods that permit
systematic targeting of this cell type for analysis. The synaptic physiology and directional tuning of this
ganglion cell type are the focus of Aim 1 where we test the hypothesis that directional selectivity in the primate
is radially aligned with respect to the fovea. Second, we have developed reliable methods for targeting the
starburst amacrine cell type, the key retinal interneuron in the direction selective circuit, for both physiological
analysis and connectomic circuit reconstruction for the first time. Preliminary data reveal novel features of
starburst receptive field structure, directional tuning and connectivity providing the focus for Aim 2 where we
test new hypotheses for the cellular origins of direction selectivity and its synaptic transfer to ganglion cells.
Finally, we have discovered direction selectivity in the poly-axonal spiking A1 amacrine cell type and evidence
for a functional link to ON-OFF direction selective ganglion cells. The focus of Aim 3 therefore is to test the
hypotheses that the A1 cells unique axonal component provides synaptic input to both starburst and ON-OFF
direction selective ganglion cells, and determine the role of the A1 cells unique dendro-axonal structure in
direction selectivity. In sum the broad aim is to characterize the directional tuning properties of these three cell
types, and to use connectomics for the first time to determine the underlying synaptic interactions that create
direction selectivity in the primate retina. Outcomes will thus have a specific impact on understanding of
mechanisms motion processing in human vision and more broadly on growing applications of the primate
model for the development of tools and methods for vision restoration.
神经生物学的主要研究挑战是了解引起的神经机制
平行视觉途径的极端多样性,最终这些途径对我们的贡献
运动,形式和颜色的感知。为了运动感知细胞类型,电路和突触机制
对运动刺激方向的选择性已经进行了深入研究
哺乳动物数十年,在小鼠中识别出十几个不同方向的选择性途径
视网膜以及越来越多的基本神经机制的证据。巨大的复杂性
在鼠标中发现的视觉途径是在灵长类动物中反映的,但令人惊讶的是丰富的方向
先前尚未鉴定出选择性神经节细胞。这项新研究的广泛长期目标
程序将首次阐明细胞类型,电路,突触组织和潜在的细胞
猕猴视网膜中方向选择性的机制,作为人类视觉的理想模型
处理以中央凹为中心。我们提出的研究计划来自一系列发现
为视觉生理和突触组织的第一个详细研究打开了一扇门
猕猴视网膜中的选择性电路。在初步研究中,我们已经确定了灵长类
方向选择性神经节细胞作为递归分类类型,并开发了允许的新方法
该细胞类型的系统靶向分析。突触生理和定向调整
神经节细胞类型是AIM 1的重点,我们测试了灵长类动物中定向选择性的假设
相对于中央凹面径向对齐。其次,我们开发了针对目标的可靠方法
starburst amacrine细胞类型,沿方向选择性电路的关键视网膜中间神经元,用于两种生理学
第一次分析和连接电路重建。初步数据揭示了新的特征
Starburst接受场结构,定向调整和连接性为AIM 2提供了重点2
测试新假设的方向选择性的细胞起源及其突触转移至神经节细胞。
最后,我们发现了在多轴尖峰A1无链氨酸细胞类型和证据中的方向选择性
对于与开关方向选择性神经节细胞的功能链接。因此,目标3的重点是测试
假设A1单元独特的轴突组件为Starburst和On-Off提供突触输入
方向选择性神经节细胞,并确定A1细胞在独特的dendro轴结构中的作用
方向选择性。总之,广泛的目的是表征这三个单元的定向调谐特性
类型,并首次使用连接组来确定创建的基础突触相互作用
灵长类动物视网膜中的方向选择性。因此,结果将对理解有特定的影响
机制在人类视野中运动处理,以及更广泛的灵长类动物应用程序的应用
开发视觉恢复工具和方法的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DENNIS MICHAEL DACEY其他文献
DENNIS MICHAEL DACEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DENNIS MICHAEL DACEY', 18)}}的其他基金
Accelerating discovery of the human foveal microconnectome with deep learning
通过深度学习加速人类中心凹微连接组的发现
- 批准号:
10411154 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10093434 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10321204 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
PHYSIOLOGY OF MACAQUE HORIZONTAL CELLS: THEIR ROLE IN SPATIAL AND COLOR VISION
猕猴水平细胞的生理学:它们在空间和色觉中的作用
- 批准号:
8357581 - 财政年份:2011
- 资助金额:
$ 38.88万 - 项目类别:
ANATOMY AND PHYSIOLOGY OF NOVEL GANGLION CELL TYPES IN MACAQUE RETINA
猕猴视网膜中新型神经节细胞的解剖学和生理学
- 批准号:
8357583 - 财政年份:2011
- 资助金额:
$ 38.88万 - 项目类别:
CIRCUITRY OF THE MIDGET AND PARASOL RECEPTIVE FIELD
侏儒和阳伞接受区的电路
- 批准号:
8357582 - 财政年份:2011
- 资助金额:
$ 38.88万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10093434 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10321204 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
Functional analysis of retinal inhibitory processes
视网膜抑制过程的功能分析
- 批准号:
8531940 - 财政年份:2009
- 资助金额:
$ 38.88万 - 项目类别:
Functional analysis of retinal inhibitory processes
视网膜抑制过程的功能分析
- 批准号:
8126320 - 财政年份:2009
- 资助金额:
$ 38.88万 - 项目类别:
Functional analysis of retinal inhibitory processes
视网膜抑制过程的功能分析
- 批准号:
7736295 - 财政年份:2009
- 资助金额:
$ 38.88万 - 项目类别: