Accelerating discovery of the human foveal microconnectome with deep learning
通过深度学习加速人类中心凹微连接组的发现
基本信息
- 批准号:10411154
- 负责人:
- 金额:$ 109.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAge related macular degenerationAgingAmazeApicalArtificial IntelligenceBrainBrain DiseasesCellsCellular MorphologyCentral Nervous System DiseasesClinicalCollaborationsColorColor VisionsComplexComputer softwareConeCytoplasmDataDevelopmentDiabetic RetinopathyDiagnostic ImagingDietary ComponentDiseaseElectron MicroscopyEyeFloorForm PerceptionFunctional disorderFutureGoalsHumanImageIndustryIon ChannelLeadLicensingLinkMachine LearningManualsMeasuresMediatingMembraneMethodsModelingMotionMuller&aposs cellMusNeocortexNervous system structureNeuraxisNeurobiologyNeurodegenerative DisordersNeurogliaNeuronsNeurophysiology - biologic functionNeurosciencesOphthalmologyOrgan DonorOrganellesOutcomeOutputPhotoreceptorsPigmentsPlayProcessRecoveryResearchRetinaRetinal ConeRetinal DiseasesRodRoleShort Interspersed Nucleotide ElementsSignal TransductionSoftware ToolsSpatial DistributionStructureStructure of retinal pigment epitheliumSupporting CellSurfaceSynapsesSystemTechniquesTechnologyTestingTimeTissuesVisionVisualVisual PathwaysXanthophyllsautomated segmentationbasecell typeclinical diagnosticsclinical imagingconvolutional neural networkcostdata visualizationdeep learningdeep learning modeldensitydisease diagnosisflyfovea centralisinnovationlearning strategymicroscopic imagingnanoscaleneural circuitnovelpostsynapticpreservationpresynapticrapid techniquereconstructionrelating to nervous systemretinal imagingretinal neuronsoftware developmentsystems researchtoolvision science
项目摘要
Project Summary
The human retina is one of the most complex microcircuits of the central nervous system (CNS) and is a model
of CNS neurodegenerative disease with unique advantages for microconnectomics technology advancement.
The central retina or fovea mediates high acuity vision, drives activity in half of the brain, and is a critical locus
for prevalent blinding disease. The fovea is small (<1 mm), accessible, and relevant to CNS disease diagnosis
through advanced cellular-level clinical imaging. The full foveal microconnectome comprises both the diverse
neural circuits that create parallel visual pathways as well as complex microconnectivity with two specialized
cell types of neuroectodermal origin, the retinal pigment epithelium (RPE) and the Müller glia. Our group has
pioneered ultra-short recovery times of eyes from organ donors, to create exquisitely preserved retinal tissue
volumes suitable for the first microconnectomic analysis of an intensively investigated human CNS structure.
The goal of this proposal is to accelerate the human foveal microconnectome by refining and augmenting a
highly successful and professionally supported software platform, Dragonfly by Object Research Systems
(ORS), an industry leader in implementation of deep learning methods for auto-segmentation of complex
structure. Our collaboration with ORS will target development of deep learning (DL) models as well as
annotation and proofreading tools that will have broad applicability to neuroscience microconnectomics. In
preliminary studies we discovered that RPE cells give rise to extremely dense neural-like projections to
photoreceptor cells and that foveal Müller glia similarly have a specialized and complex relationship to foveal
microcircuits. Moreover, single foveal cone photoreceptors were presynaptic to dozens of parallel visual
circuits of extreme complexity. To advance understanding of these complex microconnectomes ORS will
augment fast auto-segmentation using newly developed convolutional neural networks and refine sophisticated
tools for rapid annotation, proofreading, data visualization, and quantitative analysis. In Aims 1 and 2 we will
develop complete deep learning models of the human RPE cell-neuronal microconnectome and the Müller cell-
neuronal microconnectome respectively that will transform our understanding of the critical roles these cell
types play in foveal function and disease. In Aim 3 we will develop a deep learning model of the multiple neural
cell types and microconnectome of parallel visual pathways for form, color, and motion vision. The major
outcome will be the transformation of a powerful, widely used, professionally supported, DL-based platform for
broad application to neuroscience microconnectomics, free for academic research via a no-cost license. The
ORS-Dragonfly platform will accelerate microconnectomics of complex CNS circuitry and impact systems
neuroscience, human neuro-pathophysiology, and interpretation of cellular-level clinical imaging. This proposal
combines expertise and innovation in neurobiology, vision science, clinical ophthalmology and connectomics,
with DL software development and application.
项目摘要
人视网膜是中枢神经系统(CNS)最复杂的微电路之一,是一个模型
中枢神经系统神经退行性疾病具有独特的微连接学技术进步的优势。
中央视网膜或中央凹介导高敏锐的视觉,在一半的大脑中驱动活动,是一个关键的基因座
用于普遍的盲目疾病。 Fovea很小(<1 mm),可访问且与CNS疾病诊断有关
通过晚期细胞级临床成像。完整的凹起的微核心均包含潜水员
神经回路产生平行的视觉途径以及具有两个专业的复杂微连接性
神经外科起源的细胞类型,视网膜色素上皮(RPE)和Müller神经胶质。我们的小组有
从器官捐赠者的开拓性超短缺的恢复时间,以创建精确保存的永久性组织
适用于对人类中枢神经系统结构进行深入研究的首次微连接分析的体积。
该提案的目的是通过完善和增强A加速人类中央凹
非常成功且受专业支持的软件平台,对象研究系统的蜻蜓
(ORS),实施深度学习方法的行业领导者自动分割复杂
结构。我们与ORS的合作将针对深度学习(DL)模型的发展以及
注释和校对工具将对神经科学微连接学具有广泛的适用性。在
初步研究,我们发现RPE细胞引起了非常密集的神经样项目
感光细胞和Fovealmüller胶质类似地与Foveal具有专业且复杂的关系
微电路。此外,单一凹锥光感受体是数十个平行视觉的突触前的
极端复杂性的电路。提高对这些复杂的微社会切除术的理解将
使用新开发的卷积神经网络增强快速自动细分,并精致
快速注释,校对,数据可视化和定量分析的工具。在目标1和2中,我们将
开发人类RPE细胞神经元微角核和müller细胞的完整深度学习模型 -
神经元微角色分别将改变我们对这些细胞的关键作用的理解
类型在动脉功能和疾病中发挥作用。在AIM 3中,我们将开发出多重中性的深度学习模型
平行视觉途径的细胞类型和微连接组,形成,颜色和运动视觉。专业
结果将是一个强大,广泛使用,专业支持,基于DL的平台的转变
广泛应用于神经科学微问题,免费用于通过无成本许可进行学术研究。这
ORS-Dragonfly平台将加速复杂CNS电路和冲击系统的微共同体学
神经科学,人类神经病理生理学和细胞水平临床成像的解释。这个建议
结合神经生物学,视觉科学,临床眼科和连接组学方面的专业知识和创新,
使用DL软件开发和应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DENNIS MICHAEL DACEY其他文献
DENNIS MICHAEL DACEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DENNIS MICHAEL DACEY', 18)}}的其他基金
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10093434 - 财政年份:2021
- 资助金额:
$ 109.99万 - 项目类别:
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10321204 - 财政年份:2021
- 资助金额:
$ 109.99万 - 项目类别:
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10525244 - 财政年份:2021
- 资助金额:
$ 109.99万 - 项目类别:
PHYSIOLOGY OF MACAQUE HORIZONTAL CELLS: THEIR ROLE IN SPATIAL AND COLOR VISION
猕猴水平细胞的生理学:它们在空间和色觉中的作用
- 批准号:
8357581 - 财政年份:2011
- 资助金额:
$ 109.99万 - 项目类别:
ANATOMY AND PHYSIOLOGY OF NOVEL GANGLION CELL TYPES IN MACAQUE RETINA
猕猴视网膜中新型神经节细胞的解剖学和生理学
- 批准号:
8357583 - 财政年份:2011
- 资助金额:
$ 109.99万 - 项目类别:
CIRCUITRY OF THE MIDGET AND PARASOL RECEPTIVE FIELD
侏儒和阳伞接受区的电路
- 批准号:
8357582 - 财政年份:2011
- 资助金额:
$ 109.99万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Oral metformin for non-neovascular age-related macular degeneration
口服二甲双胍治疗非新生血管性年龄相关性黄斑变性
- 批准号:
10223316 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Improving rigor and reproducibility in adaptive optics ophthalmoscopy
提高自适应光学检眼镜的严谨性和可重复性
- 批准号:
10225630 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Improving rigor and reproducibility in adaptive optics ophthalmoscopy
提高自适应光学检眼镜的严谨性和可重复性
- 批准号:
10441310 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Improving rigor and reproducibility in adaptive optics ophthalmoscopy
提高自适应光学检眼镜的严谨性和可重复性
- 批准号:
10653020 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Oral metformin for non-neovascular age-related macular degeneration
口服二甲双胍治疗非新生血管性年龄相关性黄斑变性
- 批准号:
10040399 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别: