Computational dissociation of the causes of cognitive rigidity in depression
抑郁症认知僵化原因的计算分离
基本信息
- 批准号:10517168
- 负责人:
- 金额:$ 23.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnhedoniaAnimal ModelBehaviorBehavioralClinicalCognitiveComputer ModelsDataData SetDecision MakingDepressed moodDissociationEarly DiagnosisEarly InterventionEnvironmentEquipment and supply inventoriesFaceFailureFeeling hopelessFutureGoalsHumanImpairmentIndividual DifferencesLeadLearningLightLinkMajor Depressive DisorderMental DepressionMindModelingMoodsMusOutcomePatientsPatternPerceptionPersonsPhysiologicalPopulationProcessPsychological reinforcementResearchRewardsSamplingSeveritiesShapesSuicideSuicide attemptSymptomsTestingTranslatingTreatment outcomeUnited StatesVariantWorkanxiousbasecognitive controlcognitive processcognitive rigiditycomputer frameworkdepressive symptomsenvironmental changeexpectationexperienceflexibilityinnovationmodel designmodels and simulationnovelpre-clinicalprematureprognosticresponsesuccesssuicidal risktheories
项目摘要
Depression distorts perceptions of the past and future, manifesting in symptoms such as hopelessness and
anhedonia, along with increasingly rigid patterns of decision-making. However, the mechanistic link between
important prognostic symptoms in depression and depressive rigidity remains poorly understood. In large part,
this is because we lack validated computational models that explain how appraisals of the past and
views of the future can mechanistically contribute to cognitive rigidity or flexibility. Here, we construct
and test a mechanistic model that will allow us to quantify the impact of depressive symptoms on cognitive
flexibility and open new avenues for early diagnosis and intervention.
Previous work modeling decision-making in depression with reinforcement learning (RL) has shed light
on how depressive symptoms like anhedonia alter reward-based judgements. However, standard RL lacks the
validity needed to explain depressive rigidity. Here, we develop a novel model from another powerful
computational framework: foraging theory. We designed this model with depressive symptoms in mind to
explicitly link learning from the past and estimating the future to cognitive flexibility.
The central hypothesis is that learning from past rewards and estimating future rewards are dissociable
mechanisms that control cognitive flexibility. The specific aims of this proposal are to (1) Determine how
appraisals of the past and future shape cognitive flexibility and (2) Examine how variations in the
environment constrain cognitive flexibility. To accomplish these aims, we will characterize how judgements
about the past and future influence decision-making rigidity and respond to environmental changes through
model simulation and analysis. We will determine how individual differences in these cognitive processes are
learned from the environment and if they predict rigidity by administering a flexible decision-making task to
clinical depression and large online samples. Collecting depressive symptom inventories along with task data
will allow us to interrogate the mechanisms by which depressive symptoms like anhedonia lead to rigidity. To
test cross-species validity for preclinical work, we apply this model to a previously collected mouse behavioral
dataset.
Innovation: Our novel model will determine how views of the past and future, and their responses to the
environment, contribute to cognitive rigidity, and how they are impacted by depressive symptoms in an online
sample. The results will guide future hypothesis-driven research into the algorithmic basis of depressive rigidity
in patients. Specifically, a future R01 application will test the model’s utility for predicting depression subtypes
and treatment outcomes in a clinical population. This model will also enable us to study the physiological bases
of these computational processes in animal models and humans undergoing invasive and non-invasive
neurophysiolgoical studies.
抑郁扭曲了对过去和未来的看法,表现在绝望和
Anhedonia,以及越来越严格的决策模式。但是,
抑郁症和抑郁型僵化中的重要预后症状仍然知之甚少。在很大程度上,
这是因为我们缺乏验证的计算模型,这些模型解释了过去和过去的评估
对未来的看法可以机械地有助于认知僵化或灵活性。在这里,我们构建
并测试一种机械模型,该模型将使我们能够量化抑郁症状对认知的影响
灵活性和开放新途径,用于早期诊断和干预。
以前的工作建模抑郁症的决策通过加强学习(RL)浮出水面
关于Anhedonia等抑郁症状如何改变基于奖励的判断。但是,标准RL缺乏
有效性需要解释抑郁型僵硬。在这里,我们从另一个强大的
计算框架:觅食理论。我们设计了这个模型,考虑到抑郁症状
明确将学习与过去的学习联系起来,并将未来估算到认知灵活性。
中心假设是从过去的奖励中学习并估算未来的奖励是可分开的
控制认知灵活性的机制。该提案的具体目的是(1)确定如何
对过去和未来的认知灵活性的评估,以及(2)检查如何变化
环境约束认知灵活性。为了实现这些目标,我们将表征如何判断
关于过去和未来的影响决策僵化,并通过
模型模拟和分析。我们将确定这些认知过程中的个体差异如何
从环境中学到的学习以及他们是否通过管理灵活的决策任务来预测刚性
临床抑郁症和大型在线样本。收集抑郁症状清单以及任务数据
将使我们能够审问抑郁症状等机制,例如抗逆转录病毒症,导致僵化。到
临床前工作的测试跨物种有效性,我们将此模型应用于先前收集的小鼠行为
数据集。
创新:我们的新颖模型将决定过去和未来的观点,以及它们对
环境,有助于认知僵化,以及在线中如何受到抑郁症状的影响
样本。结果将指导未来以假设为驱动的假设驱动的研究,以抑制刚度的算法基础
在患者中。具体而言,未来的R01应用程序将测试该模型的预测抑郁症子类型的实用性
和临床人群的治疗结果。该模型还将使我们能够研究物理基础
在动物模型和人类中经历侵入性和非侵入性的这些计算过程中
神经生理学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Herman其他文献
Alexander Herman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Herman', 18)}}的其他基金
Computational dissociation of the causes of cognitive rigidity in depression
抑郁症认知僵化原因的计算分离
- 批准号:
10684272 - 财政年份:2022
- 资助金额:
$ 23.47万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational dissociation of the causes of cognitive rigidity in depression
抑郁症认知僵化原因的计算分离
- 批准号:
10684272 - 财政年份:2022
- 资助金额:
$ 23.47万 - 项目类别:
Development of the AI-driven model for anti-SUD drug development based on neuronal plasticity
基于神经元可塑性的人工智能驱动抗SUD药物开发模型的开发
- 批准号:
10467528 - 财政年份:2022
- 资助金额:
$ 23.47万 - 项目类别:
Identifying Person-Specific Drivers of Adolescent Depression via Idiographic Network Modeling of Active and Passive Smartphone Data
通过主动和被动智能手机数据的具体网络建模来识别青少年抑郁症的特定个人驱动因素
- 批准号:
10196290 - 财政年份:2021
- 资助金额:
$ 23.47万 - 项目类别:
Identifying Person-Specific Drivers of Adolescent Depression via Idiographic Network Modeling of Active and Passive Smartphone Data
通过主动和被动智能手机数据的具体网络建模来识别青少年抑郁症的特定个人驱动因素
- 批准号:
10393050 - 财政年份:2021
- 资助金额:
$ 23.47万 - 项目类别:
Examination of resting state functional connectivity as a marker of acute suicide risk
检查静息状态功能连接作为急性自杀风险的标志
- 批准号:
9780783 - 财政年份:2020
- 资助金额:
$ 23.47万 - 项目类别: