Identifying Person-Specific Drivers of Adolescent Depression via Idiographic Network Modeling of Active and Passive Smartphone Data
通过主动和被动智能手机数据的具体网络建模来识别青少年抑郁症的特定个人驱动因素
基本信息
- 批准号:10196290
- 负责人:
- 金额:$ 19.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-14 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:18 year oldAddressAdolescenceAdolescentAdultAffectAlgorithmsAnhedoniaBehaviorBenchmarkingCaregiversCellular PhoneCharacteristicsClinicalClinical ResearchCognitiveCognitive TherapyDataData CollectionDepressed moodDevelopmentDiagnosticDiseaseEcological momentary assessmentExhibitsFeedbackFrequenciesFutureHeterogeneityIndividualIndividual DifferencesInfluentialsInterventionInterviewIrritable MoodLeadMachine LearningMaintenanceMajor Depressive DisorderMeasurementMeasuresMental DepressionMethodsModelingMonitorMoodsMorbidity - disease rateOutcomeOwnershipParentsParticipantPatient Self-ReportPersonal CommunicationPersonsPhysical activityPhysiologyProcessPsychopathologyPsychotherapyPublic HealthPublishingResearchResearch Domain CriteriaResearch PersonnelRiskSignal TransductionSleepSubgroupSurveysSymptomsTeenagersTestingTherapeuticTimeValidationWorkWristYouthactigraphyanxiousbasechild depressiondepressive symptomsdiariesexperiencefollow up assessmentfollow-upimprovedinsightmortalitynatural languagenetwork modelsnovelpersonalized decisionpersonalized interventionpersonalized medicineprospectivepsychologicracial and ethnicrelating to nervous systemresponsesensorsocialsocioeconomicstooltreatment effect
项目摘要
PROJECT SUMMARY/ABSTRACT
Adolescents experience escalating risk for developing clinical depression, which can lead to lifelong morbidity
and mortality. The neural, physical, cognitive, and socioemotional changes that may contribute to this risk also
signal an opportunity for high impact intervention. Unfortunately, psychotherapy trials demonstrate modest
effects on youth depression. To improve long-term outcomes for adolescents, this study will identify person-
specific drivers of adolescent depression that can guide treatment personalization. Prior research with
depressed or anxious adults demonstrates the existence of such drivers—symptoms and related processes
that are influential (i.e., predict change in other symptoms), modifiable, and exhibit individual differences.
Personalized selection and sequencing of cognitive behavioral therapy (CBT) modules to target these drivers
early in adults have produced larger treatment effects compared to a historical benchmark. Identifying person-
specific drivers during adolescence could inform treatments that account for both developmental and individual
differences to shift the trajectory of depression onset and maintenance. Investigating person-specific drivers
usually involves intensive surveying of self-reported experience via smartphone-based ecological momentary
assessment (EMA). Emerging evidence suggests that smartphones can also monitor mood through passive
sensing of depression-related behaviors with minimal response burden. However, nearly all such studies have
been conducted with adults, despite near universal smartphone ownership among adolescents in the US.
Thus, this study will leverage depressed adolescents' everyday smartphone use to assess the validity of
mobile sensing against established ambulatory methods (i.e., EMA and actigraphy) to identify person-specific
drivers of adolescent depression. Fifty adolescents (12–18 years old) with elevated depressive symptoms will
participate in 30 days of: a) smartphone-based EMA of depressive symptoms, processes, and affect (4x/day),
sleep diary (1x/day); (b) mobile sensing of mobility, physical activity, sleep, natural language use in typed
interpersonal communication, screen-on time and call frequency/duration; and (c) wrist actigraphy of physical
activity and sleep. Adolescents and caregivers will complete diagnostic interviews and other measures (e.g.,
developmental, clinical, Research Domain Criteria) at baseline, as well as user feedback interviews at follow-
up. To address study aims: 1) idiographic, within-subject networks of EMA symptoms will be modeled to
identify each adolescent's drivers; 2) correlations among EMA, mobile sensor, and actigraph measures of
sleep, physical, and social activity; and machine learning prediction of core depressive symptoms (self-
reported mood and anhedonia) will be used to assess the validity of mobile sensing for identifying person-
specific drivers; 3) between-subject baseline characteristics will be explored as predictors of person-specific
drivers. These results will inform future development of a scalable, low-burden smartphone-based tool that can
guide personalized treatment decisions for depressed adolescents, with potential public health impact.
项目摘要/摘要
青少年经历升级临床抑郁症的经验,这可能导致终生发病
和死亡率。
不幸的是,心理治疗试验表明了高影响力的机会。
对青少年抑郁症的影响。
青少年抑郁症的驱动因素可以指导treade治疗个性化。
depsed或焦虑的成年人证明了此类驱动因素的存在 - 症状和相关的processessssssssssssess
具有影响力的(即预测其他症状的变化),可修改和展示差异。
认知行为疗法(CBT)模块的个性化选择和测序以针对这些驱动程序
与历史基准相比,成年人的早期治疗效果比较较大。
在耗时青少年期间的细节可以告知治疗
剥夺和维护的轨迹的差异
通常涉及通过基于智能手机的生态瞬间对自我报告的体验进行密集的测量
评估(EMA)。
感知与抑郁症相关的行为,但几乎所有此类研究都有
尽管在美国的青少年中拥有几乎通用的智能手机所有权,但还是与成年人一起进行的。
因此,这项研究将利用沮丧的青少年的日常智能手机使用
移动传感针对已建立的门诊方法(即EMA和Actraphy),以识别特定于人的
青少年抑郁症的驱动因素。
参加30天的参与:a)基于智能手机的抑郁症状,过程和影响(4倍/天)的EMA,
睡眠日记(1倍/天);
人际关系,屏幕时间和呼叫频率/持续时间;
活动和睡眠。
基线的发展,临床,研究领域标准)以及以下方面的反馈访谈
向上解决研究目的:1)习惯,主体内症状的网络将建模为
确定每个青少年的驱动程序; 2)
睡眠,身体和社交活动;
报告的情绪和Anhedonia)将用于评估移动传感对识别人的有效性 -
特定的驱动因素; 3)受试者之间的基线特征将作为特定的预测指标
驱动程序。
指导沮丧的熟悉的个性化信任决策,并具有潜在的公共卫生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mei Yi Ng其他文献
Mei Yi Ng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mei Yi Ng', 18)}}的其他基金
Identifying Person-Specific Drivers of Adolescent Depression via Idiographic Network Modeling of Active and Passive Smartphone Data
通过主动和被动智能手机数据的具体网络建模来识别青少年抑郁症的特定个人驱动因素
- 批准号:
10393050 - 财政年份:2021
- 资助金额:
$ 19.83万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Leveraging complementary big data methods and patient intervention designs to optimize neural markers of adolescent cannabis use
利用互补的大数据方法和患者干预设计来优化青少年大麻使用的神经标记
- 批准号:
10739527 - 财政年份:2023
- 资助金额:
$ 19.83万 - 项目类别:
A Family-Based HIV Prevention Program for Black Men to Protect Black Girls
针对黑人男性的基于家庭的艾滋病毒预防计划,以保护黑人女孩
- 批准号:
10716525 - 财政年份:2023
- 资助金额:
$ 19.83万 - 项目类别:
A multi-site feasibility clinical trial of Retraining and Control Therapy (ReACT), a mind and body treatment for pediatric functional seizures
再训练和控制疗法 (ReACT) 的多中心可行性临床试验,这是一种针对儿童功能性癫痫发作的身心治疗方法
- 批准号:
10648379 - 财政年份:2023
- 资助金额:
$ 19.83万 - 项目类别:
Investigation of Digital Media Use, Anxiety, and Biobehavioral Emotion Regulation in Adolescents
青少年数字媒体使用、焦虑和生物行为情绪调节的调查
- 批准号:
10814547 - 财政年份:2023
- 资助金额:
$ 19.83万 - 项目类别:
Using machine learning to accelerate our understanding of risks for early substance use among child-welfare and community youth
利用机器学习加速我们对儿童福利和社区青少年早期药物使用风险的了解
- 批准号:
10734004 - 财政年份:2023
- 资助金额:
$ 19.83万 - 项目类别: