Deep and fast imaging using adaptive excitation sources
使用自适应激励源进行深度快速成像
基本信息
- 批准号:10516870
- 负责人:
- 金额:$ 55.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAmplifiersAnimal ModelBehaviorBrainBrain imagingBudgetsCalciumChronicCortical ColumnDataDetectionDevelopmentFiberFluorescenceFrequenciesGasesGaussian modelGenerationsGeneticGoalsImageImaging DeviceImaging technologyInstitutionLasersMeasurementMethodsMicroscopeMusNervous system structureNeuronsNeurosciencesNoiseOpticsPenetrationPerformancePhotonsPhysiologic pulsePopulationProcessPulse RatesResearchResearch PersonnelResearch ProposalsResolutionResource SharingSamplingScanningSignal TransductionSiteSourceSpeedStructureSynapsesSystemTechnologyTestingTimeLineTissue imagingTissuesTrainingTreesWorkbasebrain tissuecell typecommercializationdesigndiversity and equityexperimental studyfeedingflyimaging softwareimprovedin vivoin vivo imagingindustry partnerinnovationinterestmembermultiphoton imagingmultiphoton microscopynovel strategiesoptical imagingoutreachprogramsrelating to nervous systemsecond harmonictemporal measurementthree photon microscopytrendtwo photon microscopytwo-photonvoltage
项目摘要
Abstract
Optical recordings of activity are critical to probe neural systems because they provide high-resolution,
non-invasive measurements, ranging from single neurons to entire populations in intact nervous systems, and
are readily combined with genetic methods to provide cell type-specific recordings. Nevertheless, the limited
penetration depth, spatial scale and temporal resolution remain major challenges for optical imaging. Cellular-
resolution imaging in scattering brains is typically achieved with multiphoton microscopy (MPM). Because of the
nonlinear excitation process, the development of multiphoton imaging depends critically on ultrafast technologies,
particularly femtosecond sources. From the first demonstrations of second harmonic generation (SHG) and 2-
photon fluorescence (ruby laser), the first 2-photon imaging (mode-locked femtosecond laser), to the deepest 3-
photon imaging so far (long wavelength optical parametric amplifiers), advances in multiphoton imaging have
been largely propelled by the innovations in laser technologies. This research proposal aims to continue this
trend. We will develop and disseminate a new generation of ultrafast lasers and multiphoton imaging tools that
will enable deep, fast, and large-scale imaging of structure and function with cellular and subcellular resolution.
To approach the fundamental limits defined by the “photon budget”, we will develop an adaptive excitation source
(AES) at 1300 nm for deep tissue 3-photon microscopy (3PM). By feeding the structural information of the sample
to the laser source, the AES generates on-demand pulses only within regions of interest (ROIs) and transforms
a conventional multiphoton microscope into a “random-access” microscope for the ROIs. We will integrate the
AES with high speed scanners and optimize the photon budget and scanning systems. We will further test and
validate the performance of the new imaging technology in three proof-of-concept experiments in animal models.
The research involves close interactions between the PI (Chris Xu) and Co-investigators (Alex Kwan, Frank Wise,
Nilay Yapici, and Rafael Yuste). Furthermore, we will work with industry partners to explore commercialization
of the technology, which will provide a direct path to broad dissemination. The combination of 1300 nm AES and
3PM will transform our ability to image deep and fast and will have a broad impact on neuroscience where high-
resolution, high speed imaging deep within an intact brain is required. The team members are active proponents
of diversity, equity and inclusion (DEI) in their institutions, and will integrate the goals of this research program
with advancing DEI.
抽象的
活动的光学记录对于探针神经系统至关重要,因为它们提供了高分辨率,
非侵入性测量值,从单个神经元到完整的神经系统中的整个种群,
很容易与遗传方法相结合,以提供细胞类型特异性记录。然而,有限
穿透深度,空间尺度和临时分辨率仍然是光学成像的主要挑战。细胞的
散射大脑中的分辨率成像通常是通过多光子显微镜(MPM)实现的。因为
非线性令人兴奋的过程,多光子成像的发展急取决于超快技术,
特别是飞秒的来源。从第二次谐波生成(SHG)和2-的第一次演示起
光子荧光(Ruby Laser),第一个2光子成像(模式锁定的飞秒激光),最深的3--
到目前为止的光子成像(长波长光学参数放大器),多光子成像的进展具有
激光技术的创新在很大程度上被推动了。这项研究建议旨在继续
趋势。我们将开发并传播新一代的超快激光器和多光子成像工具
将通过细胞和亚细胞分辨率对结构和功能进行深,快速和大规模的成像。
为了达到由“光子预算”定义的基本限制,我们将开发自适应兴奋来源
(AE)在1300 nm处用于深组织3光子显微镜(3pm)。通过喂养样品的结构信息
到激光源,AES仅在感兴趣区域(ROI)内生成按点脉冲并转换
常规的多光子显微镜进入ROI的“随机访问”显微镜。我们将整合
具有高速扫描仪的AE,并优化了光子预算和扫描系统。我们将进一步测试
在动物模型中的三个概念验证实验中验证新成像技术的性能。
该研究涉及PI(Chris Xu)与共同研究者之间的密切相互作用(Alex Kwan,Frank Wise,
Nilay Yapici和Rafael Yuste)。此外,我们将与行业合作伙伴合作探索商业化
该技术将为广泛传播提供直接途径。 1300 nm AES和
下午3点将改变我们对深度和快速形象形象的能力,并将对神经科学产生广泛的影响,而在高处
分辨率,需要在完整大脑内深处成像。团队成员是积极的支持者
在其机构中多样性,公平和包容性(DEI),并将整合该研究计划的目标
随着dei的前进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRIS XU其他文献
CHRIS XU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRIS XU', 18)}}的其他基金
A multi-foci objective lens for large scale brain activity recording
用于大规模大脑活动记录的多焦点物镜
- 批准号:
10731905 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Understanding the in vivo impact of immunotherapies in splenic lymphoma by intravital three-photon microscopy
通过活体三光子显微镜了解免疫疗法对脾淋巴瘤的体内影响
- 批准号:
10576013 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Close-loop, spatially addressable multiphoton functional imaging
闭环、空间可寻址多光子功能成像
- 批准号:
10580393 - 财政年份:2022
- 资助金额:
$ 55.83万 - 项目类别:
Close-loop, spatially addressable multiphoton functional imaging
闭环、空间可寻址多光子功能成像
- 批准号:
10246271 - 财政年份:2019
- 资助金额:
$ 55.83万 - 项目类别:
Wavefront sensor for deep imaging of the brain
用于大脑深度成像的波前传感器
- 批准号:
9136863 - 财政年份:2015
- 资助金额:
$ 55.83万 - 项目类别:
Optimization of 3-photon microscopy for Large Scale Recording in Mouse Brain
用于小鼠大脑大规模记录的三光子显微镜优化
- 批准号:
8827026 - 财政年份:2014
- 资助金额:
$ 55.83万 - 项目类别:
Optimization of 3-photon microscopy for Large Scale Recording in Mouse Brain
用于小鼠大脑大规模记录的三光子显微镜优化
- 批准号:
9130300 - 财政年份:2014
- 资助金额:
$ 55.83万 - 项目类别:
Technology development for in vivo deep tissue imaging
体内深层组织成像技术开发
- 批准号:
8271179 - 财政年份:2012
- 资助金额:
$ 55.83万 - 项目类别:
Technology development for in vivo deep tissue imaging
体内深层组织成像技术开发
- 批准号:
8604711 - 财政年份:2012
- 资助金额:
$ 55.83万 - 项目类别:
相似国自然基金
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向超精密电机系统的双降压对称半桥功率放大器噪声机理及抑制策略研究
- 批准号:52307042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紧凑型大功率微波速调管放大器研究
- 批准号:62371108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于SISL的三维集成封装宽带高效率功率放大器研究
- 批准号:62301387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10705770 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10490983 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10914715 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10674415 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10294053 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别: