Internal Dynamics of the Postsynaptic Density
突触后密度的内部动力学
基本信息
- 批准号:10517494
- 负责人:
- 金额:$ 68.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-05 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsActinsAction PotentialsAcuteAddressAdhesionsAlzheimer&aposs DiseaseArchitectureBehaviorBindingBiologicalBrainCell Adhesion MoleculesCellsComplexCytoskeletonDataDiseaseElectroporationElementsEventEvoked PotentialsExtracellular DomainFaceFundingGeneticGlutamate ReceptorGlutamatesGoalsGrantHumanIndividualKnock-outLightLinkMaintenanceMapsMediatingMemoryMental DepressionMental disordersMethodologyMethodsModelingMolecularMovementNanostructuresNeuronsNeurosciencesOpticsOutcomePatternPeptide HydrolasesPerformancePhysiologicalPhysiologyPlayPolymersPositioning AttributeProbabilityProcessProteinsPublishingReagentResolutionRoleSamplingScaffolding ProteinSchizophreniaSignal TransductionSiteSliceStructureSynapsesSynaptic CleftSynaptic PotentialsSynaptic ReceptorsSynaptic TransmissionSynaptic plasticityTechnologyTestingTimeVesicleVisualizationWorkaddictionautism spectrum disorderbiochemical toolsbrain tissuedensitydepolymerizationexperienceexperimental studyextracellulargenetic regulatory proteinimaging modalityin uteroin vivoinsightmolecular imagingnanonanoclusternanometer resolutionnanopatternnanoscaleneuroligin 1neurotransmitter releasepharmacologicpolymerizationpostsynapticpresynapticprotein complexreceptorrecruitsingle moleculespatiotemporalsuperresolution imagingsynaptic functiontool
项目摘要
Mechanisms that create, maintain, and modulate synapses are essential building blocks of human behavior.
Disruptions to these mechanisms are inextricably linked to aberrant behavior and diseases ranging from
depression and schizophrenia to addiction and Alzheimer’s Disease. Thus, the long-term goal of this grant is to
pursue a deep understanding of the molecular organization underlying synaptic transmission and plasticity.
Our previous work took advantage of the extremely high-resolution enabled by single-molecule imaging
methods and determined that at glutamatergic synapses, key proteins in the active zone and the postsynaptic
density are enriched in subsynaptic nanodomains (<100 nm). Most surprisingly, nanodomains of the critical
fusion-regulatory proteins RIM and Munc13 in the presynaptic active zone align with high precision across the
synaptic cleft from nanodomains enriched in postsynaptic glutamate receptors. Using single-vesicle fusion
mapping, we determined that the local density of RIM within active zone subregions predicts the probability of
action potential-evoked vesicle fusion. This striking architectural arrangement has important implications for
how synapses function. This nano-alignment between release sites and receptors can modulate synaptic
transmission and potentially influence intracellular signaling. Preliminary data here and published work from
others establishes that transsynaptic nanoalignment is an important element of synaptic architecture, widely
present in diverse synapse types. Further, our data provide firm evidence that subsynaptic nanostructure and
nanoalignment are dynamically modulated during synaptic plasticity and actively maintained by ongoing
molecular interactions. These observations strongly motivate understanding the mechanisms involved in
creating and maintaining transsynaptic alignment. Therefore, we will test a set of related but independent
hypotheses about the origin and maintenance of transsynaptic nanoalignment. We will test 1) whether two key
neurexin partners, neuroligin and LRRTM, cooperate to provide the structural basis of transsynaptic alignment,
2) whether glutamate receptors themselves are necessary or sufficient to influence the nanoscale protein
organization of the active zone 3), whether the active zone RIM complex conveys instructive information to
establish postsynaptic nanopatterning, and 4) how the actin cytoskeleton exerts ongoing control over synapse
nanoscale architecture. To answer these questions, we have worked to establish and apply several new
broadly useful technologies. We utilize a new super-resolution imaging methodology to visualize cellular
substructure at nanometer resolution in vivo, apply multiplexed single-molecule imaging to map numerous
proteins in the same sample, and develop new optical and biochemical tools to acutely control the actin
cytoskeleton, adhesion complexes, and receptor distribution with high spatiotemporal resolution and in brain
slices. The outcomes of these experiments will answer core questions about the genesis of an important new
aspect of synaptic architecture and test the physiological role of synaptic nanoalignment in brain circuits.
创建,维护和调节突触的机制是人类行为的必要基础。
这些机制的破坏与异常行为和疾病范围有密密相关
抑郁和精神分裂症对成瘾和阿尔茨海默氏病。那,这笔赠款的长期目标是
深入了解突触传播和可塑性的分子组织。
我们以前的工作利用了通过单分子成像启用的极高分辨率
方法并确定在谷氨酸能突触,活动区中的关键蛋白和突触后的关键蛋白
密度富含突触次突触纳米域(<100 nm)。关键的最令人惊讶的纳米域
融合调节蛋白RIM和MUNC13在突触前的活性区中与高精度在整个整个
富含突触后谷氨酸受体的纳米域的突触裂缝。使用单维融合
映射,我们确定有效区域子区域内边缘的局部密度预测了
动作潜在的诱发囊泡融合。这种罢工建筑安排对
突触如何功能。释放站点和接收器之间的这种纳米对齐可以调节突触
传播并潜在影响细胞内信号传导。这里的初步数据,并发布了
其他人则确定,经触发纳米纳米对是突触结构的重要组成部分,广泛
存在于潜水员突触类型中。此外,我们的数据提供了稳健的纳米结构和
在突触可塑性期间,纳米定位会动态调节,并通过持续的
分子相互作用。这些观察结果强烈激发了涉及的机制
创建和维护透射性一致性。因此,我们将测试一组相关但独立的
关于透射性纳米定位的起源和维护的假设。我们将测试1)是否两个键
神经氧蛋白伴侣,神经素和LRRTM,合作提供了透射性比对的结构基础,
2)谷氨酸受体本身是否需要或足以影响纳米级蛋白
活动区3)的组织,活动区边缘复合物是否传达有指导性的信息
建立突触后纳米图案,以及4)肌动蛋白细胞骨架如何施加对突触的持续控制
纳米级建筑。为了回答这些问题,我们一直在努力建立并应用一些新的
广泛有用的技术。我们利用一种新的超分辨率成像方法可视化细胞
在体内纳米分辨率下的子结构,应用多路复用的单分子成像来绘制众多
同一样品中的蛋白质,并开发新的光学和生化工具来急性控制肌动蛋白
具有高时空分辨率的细胞骨架,粘合剂复合物和受体分布
切片。这些实验的结果将回答有关重要新的起源的核心问题
突触结构的方面并测试突触纳米定位在脑电路中的身体作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas A Blanpied其他文献
Thomas A Blanpied的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas A Blanpied', 18)}}的其他基金
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
- 批准号:
10434923 - 财政年份:2021
- 资助金额:
$ 68.12万 - 项目类别:
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
- 批准号:
10313352 - 财政年份:2021
- 资助金额:
$ 68.12万 - 项目类别:
A Lightsheet Microscope for an Established Core Facility
适用于已建立的核心设施的光片显微镜
- 批准号:
10172216 - 财政年份:2021
- 资助金额:
$ 68.12万 - 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
- 批准号:
9449901 - 财政年份:2016
- 资助金额:
$ 68.12万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
9222595 - 财政年份:2016
- 资助金额:
$ 68.12万 - 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
- 批准号:
9214054 - 财政年份:2016
- 资助金额:
$ 68.12万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
8837233 - 财政年份:2014
- 资助金额:
$ 68.12万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
8902284 - 财政年份:2014
- 资助金额:
$ 68.12万 - 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
- 批准号:
9016561 - 财政年份:2013
- 资助金额:
$ 68.12万 - 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
- 批准号:
8488671 - 财政年份:2013
- 资助金额:
$ 68.12万 - 项目类别:
相似海外基金
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
- 批准号:
9449901 - 财政年份:2016
- 资助金额:
$ 68.12万 - 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
- 批准号:
9214054 - 财政年份:2016
- 资助金额:
$ 68.12万 - 项目类别:
Genetic Control of Synaptic Structure in the Adult Brain.
成人大脑突触结构的遗传控制。
- 批准号:
7278616 - 财政年份:2005
- 资助金额:
$ 68.12万 - 项目类别: