CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ

CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织

基本信息

项目摘要

DESCRIPTION (provided by applicant): Communication between cells in the nervous system underlies all complex behaviors, and occurs at specialized regions of the nerve cell called synapses. Synapses work by releasing chemical transmitter from a region called the active zone, which activates a neighboring cell. We propose to characterize the relationship between active zone function and structural organization within frog and mouse neuromuscular synapses. We hypothesize that neuromuscular active zones are assembled from a basic transmitter release building block: the unreliable single-vesicle release site consisting of a docked synaptic vesicle and its associated Ca2+ channels. We further hypothesize that major aspects of synaptic function and presynaptic homeostatic plasticity can be explained by changes in the number and organization of these single-vesicle release sites within active zones. Our approach is characterized by a seamless collaboration between three labs with expertise in computer simulations of cellular physiology (Dittrich lab), synaptic anatomy, physiology, and Ca2+ imaging (Meriney lab), and super-resolution imaging of the number and spatial distribution of synaptic proteins (Blanpied lab). Importantly, as part of this proposal, trainees from all three laboratories will receive crosstraining in each lab. We will use this collaborative approach to develop a comprehensive MCell computer model of the presynaptic transmitter release site that will significantly increase our understanding of the relationship between active zone organization and synaptic function. This insight will not only lead to a better understanding of presynaptic mechanisms of homeostatic plasticity but also aid in our understanding of synaptic diseases, which are known to underlie a large number of neurological disorders. Intellectual Merit: A significant number of neurological diseases are known to affect the synapse by targeting synaptic organization and function. While most research on this important topic has to date focused on postsynaptic adaptations, it has become increasingly clear that presynaptic homeostatic changes are likely to be just as important. Thus, a better understanding of the role of presynaptic structure and organization in synaptic function under both control and disease conditions is needed. Broader Impacts: The MCell model that we will develop will enhance our teaching mission in many ways. It will provide an example of unprecedented scale and realism for the illustration of nerve terminal structure and function. This material will be used in courses and programs at the University of Pittsburgh, the University of Maryland, and Carnegie Mellon University. These include undergraduate and graduate Neuroscience courses, a Computational Biology PhD program that spans PITT and Carnegie Mellon University, summer workshops, and web-based tutorials (www.mcell.org). These simulations will expand previous models that already have been converted into instructive 3D movies, which are routinely shown to a broad range of audiences during open houses, student visits or classroom teaching. This work will also provide source material for teaching examples tailored to high school outreach programs at the Pittsburgh Supercomputing Center, particularly the CMIST program (Computational Modules in Science Teaching, www.cmist.org) of the National Resource for Biomedical Supercomputing (NRBSC) directed by Dr. Dittrich. Our proposed work will have a broad impact on K-12 education, undergraduate teaching and training, graduate and post-graduate training, community outreach, STEM teaching, training at underrepresented minority institutions, and knowledge of synaptic function in the field. Dr. Meriney is a member of the Neuroscience outreach committee at the University of Pittsburgh (PITT), which organizes a variety of community events. Dr. Meriney's laboratory is in the Arts and Sciences College, so the proposed research would contribute to undergraduate teaching via undergraduate research participation in the proposed work, and changes to content for undergraduate courses based on new research insights. Dr. Dittrich will also train undergraduate students in his laboratory as participants in the proposed work. He is training faculty in the NSF funded TECBio REU program at the PITT and typically mentors 1-2 students in computational projects as part of the program. In addition, Dr. Dittrich is a training faculty in the PA Governors School for the Sciences, an intense summer program for talented high school students in Pennsylvania. Drs. Dittrich, Meriney, and Blanpied will bring graduate researchers and postdoctoral fellows into their labs who will directly participate in the proposed experiments, receive cross training in all three laboratories, and receive career training. Lastly, Dr. Ulises Ricoy (an under-represented minority faculty member) from Northern New Mexico College will visit during each summer to learn new research, teaching, and training tools to bring back to underrepresented minority undergraduates at Northern New Mexico College. This will expose these underrepresented minority students to an intense academic research environment and aid in their training and career planning.
描述(由申请人提供):神经系统中细胞之间的通信是所有复杂行为的基础,并且发生在称为突触的神经细胞的特殊区域。突触的工作原理是从称为活性区的区域释放化学递质,从而激活邻近的细胞。我们建议描述青蛙和小鼠神经肌肉突触内活动区功能和结构组织之间的关系。我们假设神经肌肉活性区是由基本的递质释放构件组装而成:不可靠的单囊泡释放位点,由对接的突触囊泡及其相关的 Ca2+ 通道组成。我们进一步假设,突触功能和突触前稳态可塑性的主要方面可以通过活动区内这些单囊泡释放位点的数量和组织的变化来解释。我们的方法的特点是三个实验室之间的无缝合作,这些实验室拥有细胞生理学计算机模拟(Dittrich 实验室)、突触解剖学、生理学和 Ca2+ 成像(Meriney 实验室)以及突触数量和空间分布的超分辨率成像方面的专业知识。蛋白质(Blanpied 实验室)。重要的是,作为该提案的一部分,来自所有三个实验室的学员将在每个实验室接受交叉培训。我们将使用这种协作方法来开发突触前递质释放位点的综合 MCell 计算机模型,这将显着增加我们对活动区组织和突触功能之间关系的理解。这种洞察不仅会带来更好的结果 了解突触前稳态可塑性机制,还有助于我们了解突触疾病,已知突触疾病是许多神经系统疾病的基础。 智力优势:已知大量神经系统疾病通过针对突触组织和功能来影响突触。虽然迄今为止关于这一重要主题的大多数研究都集中在突触后适应上,但越来越清楚的是,突触前稳态变化可能同样重要。因此,需要更好地了解突触前结构和组织在控制和疾病条件下突触功能中的作用。 更广泛的影响:我们将开发的 MCell 模型将从许多方面增强我们的教学使命。它将为神经末梢结构和功能的说明提供前所未有的规模和真实性的例子。该材料将用于匹兹堡大学、马里兰大学和卡内基梅隆大学的课程和项目。其中包括本科生和研究生神经科学课程、涵盖 PITT 和卡内基梅隆大学的计算生物学博士课程、夏季研讨会和基于网络的教程 (www.mcell.org)。这些模拟将扩展之前已转换为教育性 3D 电影的模型,这些电影通常在开放日、学生参观或课堂教学期间向广大观众展示。这项工作还将为匹兹堡超级计算中心的高中推广项目量身定制的教学示例提供源材料,特别是国家生物医学超级计算资源中心 (NRBSC) 指导的 CMIST 项目(科学教学计算模块,www.cmist.org)作者:迪特里希博士。我们提出的工作将对 K-12 教育、本科生教学和培训、研究生和研究生培训、社区外展、STEM 教学、代表性不足的少数群体机构的培训以及该领域的突触功能知识产生广泛影响。 Meriney 博士是匹兹堡大学 (PITT) 神经科学外展委员会的成员,该委员会组织各种社区活动。 Meriney 博士的实验室位于艺术与科学学院,因此拟议的研究将通过本科生研究参与拟议工作以及根据新的研究见解更改本科生课程内容来为本科生教学做出贡献。迪特里奇博士还将在他的实验室中培训本科生作为拟议工作的参与者。他正在 PITT 的 NSF 资助的 TECBio REU 项目中培训教师,并通常指导 1-2 名学生参与计算项目,作为该项目的一部分。此外,Dittrich 博士还是宾夕法尼亚州州长科学学院的培训教师,该学院是宾夕法尼亚州有才华的高中生的密集暑期项目。博士。 Dittrich、Meriney 和 Blanpied 将把研究生研究人员和博士后研究员带入他们的实验室,他们将直接参与拟议的实验,接受所有领域的交叉培训 三个实验室,并接受职业培训。最后,北新墨西哥学院的 Ulises Ricoy 博士(一名代表性不足的少数族裔教员)将在每年夏天来访,学习新的研究、教学和培训工具,以帮助北新墨西哥学院代表性不足的少数族裔本科生。这将使这些代表性不足的少数族裔学生接触到激烈的学术研究环境,并帮助他们进行培训和职业规划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas A Blanpied其他文献

Thomas A Blanpied的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas A Blanpied', 18)}}的其他基金

Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
  • 批准号:
    10434923
  • 财政年份:
    2021
  • 资助金额:
    $ 1.06万
  • 项目类别:
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
  • 批准号:
    10313352
  • 财政年份:
    2021
  • 资助金额:
    $ 1.06万
  • 项目类别:
A Lightsheet Microscope for an Established Core Facility
适用于已建立的核心设施的光片显微镜
  • 批准号:
    10172216
  • 财政年份:
    2021
  • 资助金额:
    $ 1.06万
  • 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
  • 批准号:
    9449901
  • 财政年份:
    2016
  • 资助金额:
    $ 1.06万
  • 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
  • 批准号:
    9214054
  • 财政年份:
    2016
  • 资助金额:
    $ 1.06万
  • 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
  • 批准号:
    8837233
  • 财政年份:
    2014
  • 资助金额:
    $ 1.06万
  • 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
  • 批准号:
    8902284
  • 财政年份:
    2014
  • 资助金额:
    $ 1.06万
  • 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
  • 批准号:
    9016561
  • 财政年份:
    2013
  • 资助金额:
    $ 1.06万
  • 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
  • 批准号:
    8488671
  • 财政年份:
    2013
  • 资助金额:
    $ 1.06万
  • 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
  • 批准号:
    8692943
  • 财政年份:
    2013
  • 资助金额:
    $ 1.06万
  • 项目类别:

相似国自然基金

TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
  • 批准号:
    52361020
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
  • 批准号:
    52309088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
  • 批准号:
    42376002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
  • 批准号:
    42371397
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Retinal Circuitry Response to Nerve Injury
视网膜回路对神经损伤的反应
  • 批准号:
    10751621
  • 财政年份:
    2023
  • 资助金额:
    $ 1.06万
  • 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
  • 批准号:
    10735946
  • 财政年份:
    2023
  • 资助金额:
    $ 1.06万
  • 项目类别:
Cellular Basis for Autonomic Regulation of Cardiac Arrhythmias
心律失常自主调节的细胞基础
  • 批准号:
    10627578
  • 财政年份:
    2023
  • 资助金额:
    $ 1.06万
  • 项目类别:
Wireless mechano-electrical stimulation of pudendal nerve using piezoelectric platform for stress urinary incontinence
利用压电平台无线机电刺激阴部神经治疗压力性尿失禁
  • 批准号:
    10629570
  • 财政年份:
    2023
  • 资助金额:
    $ 1.06万
  • 项目类别:
Maintaining opioid analgesia and preventing addiction with hypocretin antagonism
通过下丘脑分泌素拮抗作用维持阿片类药物镇痛并预防成瘾
  • 批准号:
    10713175
  • 财政年份:
    2023
  • 资助金额:
    $ 1.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了