Role of a novel human-virus chimeric protein generated by upstream translation and genetic overprinting
通过上游翻译和基因套印产生的新型人病毒嵌合蛋白的作用
基本信息
- 批准号:10514635
- 负责人:
- 金额:$ 21.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmino AcidsAnimalsBiochemicalCase StudyCell NucleusCellsChimeric ProteinsCodeComplementComplexContainmentCoupledDataDiseaseElementsEnsureEpidemicEpithelial CellsFamilyFoundationsFutureGenerationsGenesGeneticGenetic TranscriptionGenomeGenome MappingsGenomicsGoalsHumanHuman GenomeImmunologyInfectionInfluenza A virusInitiator CodonKnock-inLifeLife Cycle StagesMacrophageMessenger RNAMethodsMolecularMonoclonal AntibodiesMusMutationNucleotidesOpen Reading FramesPathogenesisPhenotypePhysiologicalPlant VirusesPoint MutationPrintingProcessProteinsProteomicsPublicationsRNARNA VirusesRNA-Directed RNA PolymeraseRoleSeasonsSequence AnalysisTerminator CodonTherapeuticTracheal EpitheliumTranslatingTranslational RegulationTranslationsUntranslated RegionsViralViral GenomeViral ProteinsVirulenceVirusVirus DiseasesVirus Replicationbasecell typedesignfitnessgenetic approachgenome-wideimmune activationinfluenzavirusmRNA Expressionmutantnovelpandemic diseasepathogenpathogenic viruspolypeptidepromoterprophylacticprotein expressionprotein functionrespiratory pathogenribosome profilingspatiotemporaltissue culturetranscriptometranscriptome sequencingviral RNAviral genomicsvirologyvirus genetics
项目摘要
SUMMARY
The capacity of a pathogen to overcome host barriers and establish infection is based on the
expression of pathogen-derived proteins. To understand how a pathogen antagonizes the host
and establishes infection, we need to have a clear understanding of what proteins a pathogen
encodes, how they function, and in what manner they contribute to virulence. The current
dogma about many life-threatening pathogens is that they encode just a handful of proteins
because of their limited genome. RNA viruses, like Influenza A virus (IAV), are a prime example
of this paradigm. Based on this, our understanding of virus life cycles, pathogenesis, and
therapeutic or prophylactic methods of disease containment are limited to a small set of known
proteins encoded by the viral genome.
We hypothesized that, as a result of host-virus genetic interaction, RNA viruses could generate
chimeric host-virus genes that are translated into proteins during infection. In fact, IAV, and
many other highly pathogenic viruses, use short host RNAs to prime viral transcription to
generate viral mRNA. Thus, we further hypothesized that start codons within host primer
sequences could drive the expression of chimeric human-viral coding sequences, a process that
would depend on the translatability of the viral UTR sequences. Our recent publication indicates
the existence of this mechanism, which creates human-virus protein chimeras either as
extensions of canonical viral proteins or novel polypeptides by genetic overprinting. This idea is
supported by evolutionary analysis and functional data in a few preliminary case studies. The
goal of this exploratory R21 application is to characterize in detail the genomic context that
allows the generation of viral-human proteins along with characterizing, in a physiological
manner, the role of a conserved human-virus protein generated by IAV. A combination of
reserve genetic approaches will be used to generate viral mutants and to fully characterize their
virulence at the cellular and organismal level. By investigating the role of unknown pathogen-
derived proteins, this proposal has the potential to establish their importance, elucidate their role
during infection, and provide a proof-of-principle study for future virology- immunology- and
genomic studies aimed at defining host-virus proteins in the multiple virus in which they can be
generated (3 viral families comprising human, other animal and plant viruses).
概括
病原体克服宿主障碍和建立感染的能力是基于
病原体衍生蛋白的表达。了解病原体如何拮抗宿主
并建立感染,我们需要清楚地了解病原体的蛋白质
编码,它们的功能以及它们有助于毒力的方式。电流
关于许多威胁生命的病原体的教条是它们仅编码少数蛋白质
因为它们的基因组有限。 RNA病毒,例如流感病毒(IAV),是一个很好的例子
这个范式。基于此,我们对病毒生命周期,发病机理和
疾病遏制的治疗或预防性方法仅限于一系列已知的
由病毒基因组编码的蛋白质。
我们假设,由于宿主病毒遗传相互作用,RNA病毒可能会产生
在感染过程中转化为蛋白质的嵌合宿主病毒基因。实际上,iav和
许多其他高度致病的病毒,使用短宿主RNA来素来转录到
产生病毒mRNA。因此,我们进一步假设主机底漆中的启动密码子
序列可以驱动嵌合人类病毒编码序列的表达,这一过程
将取决于病毒UTR序列的可翻译性。我们最近的出版物表明
这种机制的存在,从而形成人类病毒蛋白嵌合体
通过遗传覆盖,规范病毒蛋白或新型多肽的扩展。这个想法是
在一些初步案例研究中得到进化分析和功能数据的支持。这
此探索性R21应用的目标是详细表征
允许在生理学中生成病毒人类蛋白并表征
方式是IAV产生的保守人类病毒蛋白的作用。组合
保留遗传方法将用于产生病毒突变体,并充分表征其
细胞和生物水平的毒力。通过研究未知病原体的作用
该提议有可能确定其重要性,阐明其角色
在感染期间,并为未来的病毒学 - 免疫学和
基因组研究旨在定义多种病毒中的宿主病毒蛋白
产生(3个病毒家族,包括人,其他动物和植物病毒)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Marazzi其他文献
Ivan Marazzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Marazzi', 18)}}的其他基金
Regulation of inflammatory gene expression during SARS2 infection
SARS2感染期间炎症基因表达的调控
- 批准号:
10418248 - 财政年份:2022
- 资助金额:
$ 21.13万 - 项目类别:
Regulation of inflammatory gene expression during SARS2 infection
SARS2感染期间炎症基因表达的调控
- 批准号:
10762311 - 财政年份:2022
- 资助金额:
$ 21.13万 - 项目类别:
Role of a novel human-virus chimeric protein generated by upstream translation and genetic overprinting
通过上游翻译和基因套印产生的新型人病毒嵌合蛋白的作用
- 批准号:
10369132 - 财政年份:2021
- 资助金额:
$ 21.13万 - 项目类别:
Dynamic regulatory network models of human response to influenza virus
人类对流感病毒反应的动态调控网络模型
- 批准号:
10626922 - 财政年份:2020
- 资助金额:
$ 21.13万 - 项目类别:
Dynamic regulatory network models of human response to influenza virus
人类对流感病毒反应的动态调控网络模型
- 批准号:
10418807 - 财政年份:2020
- 资助金额:
$ 21.13万 - 项目类别:
Dynamic regulatory network models of human response to influenza virus
人类对流感病毒反应的动态调控网络模型
- 批准号:
10762225 - 财政年份:2020
- 资助金额:
$ 21.13万 - 项目类别:
Dynamic regulatory network models of human response to influenza virus
人类对流感病毒反应的动态调控网络模型
- 批准号:
10240457 - 财政年份:2020
- 资助金额:
$ 21.13万 - 项目类别:
相似国自然基金
母乳低聚糖调控动物双歧杆菌F1-7代谢芳香氨基酸机制的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母乳低聚糖调控动物双歧杆菌F1-7代谢芳香氨基酸机制的研究
- 批准号:32202061
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
泌乳反刍动物主要组织器官AA代谢调控途径与机制研究
- 批准号:31772623
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
氨基酸转运体CD98/LAT1维持mTORC1低水平在调控中枢神经系统胶质瘤肿瘤干细胞干性上的意义和机制
- 批准号:81702939
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
氨基酸代谢在银屑病mTOR-HIF-1α通路调控异常中的机制研究
- 批准号:81673056
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
Shifting paradigms to emerging toxins in freshwater cyanobacterial blooms
淡水蓝藻水华中新出现的毒素的范式转变
- 批准号:
10912318 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别: