Structural analysis of protein-protein and protein-lipid interactions of lens membrane proteins.
晶状体膜蛋白的蛋白质-蛋白质和蛋白质-脂质相互作用的结构分析。
基本信息
- 批准号:10508511
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdoptedAffectAgeBindingBiological AssayBlindnessC-terminalCalcium-Binding ProteinsCalmodulinCataractCell AdhesionChemicalsComplementCrystalline LensDataDeuteriumDevelopmentEnvironmentFunctional disorderGalectin 3GenerationsGoalsHealthcare SystemsHomeostasisHumanHydrogenIntegral Membrane ProteinLens FiberLifeLinkLipid BindingLipidsMIP geneMass Spectrum AnalysisMembraneMembrane ProteinsMicrocirculationMusMutationNutrientOperative Surgical ProceduresPermeabilityPhysiologicalPlayPropertyProtein AnalysisProtein DynamicsProteinsRegulationReportingResearch PersonnelRoleSiteStructureSystemTailTechniquesTestingTissuesVascular blood supplyVisionWatercell watercommon treatmentcostcrosslinkexperimental studyfiber cellinsightlenslens transparencymolecular dynamicspreventprotein functionprotein structurereconstitutiontherapeutic developmenttherapeutic targetwastingwater channel
项目摘要
Summary/abstract: Cataract is the leading cause of blindness worldwide, costing the US Healthcare system
billions of dollars annually for surgical treatment. Lens opacification has been linked to dysfunction in major
membrane proteins, Aquaporin-0 (AQP0) and Lim2. The overall goal of my project is to develop a
comprehensive understanding of the structure and function of protein-protein and protein-lipid interactions of
these membrane proteins. In the absence of a blood supply, the microcirculation system transports nutrients
and removes wastes to inner fiber cells and is essential for maintaining lens transparency over decades of life;
however, how this microcirculation system is established and maintained as a function of age is not well
understood. Using advanced mass spectrometry techniques such as hydrogen-deuterium exchange-MS,
native-MS and chemical crosslinking studies, I intend to elucidate how specific protein and lipid interactions
impact the structure and function of AQP0 and Lim2; membrane proteins that are fundamental to the
microcirculation system of the lens. The most abundant lens membrane protein, AQP0, plays important roles in
lens fiber cell adhesion and water permeability with water permeability regulated by interaction with the
calcium-binding protein, calmodulin. Data from my lab and others demonstrated that calmodulin interacts with
the C-terminal tail of AQP0; however, molecular dynamic (MD) simulations suggest a non-canonical interaction
with a cytosolic loop of AQP0. This MD prediction has not been experimentally validated. In addition to AQP0-
protein interactions (Aim 1), I hypothesize that AQP0-lipid interactions (Aim 2) regulate AQP0 permeability and
adhesion properties that underlie lens transparency; however, there are limited reports on AQP0 interactions
with native lipids. Given the vital role of AQP0 in maintaining lens transparency and its connection to cataract,
understanding regulatory interactions with proteins such as calmodulin and native lipids will clarify its role in the
microcirculation system. The second most abundant membrane protein in the lens is Lim2 and, like AQP0, its
mutation has been associated with cataractogenesis in mice; however, little is known about Lim2-protein
interactions (Aim 1). Binding partners to Lim2 have been reported, i.e. calmodulin and galectin-3, but how
these interactions modulate Lim2 structure and function are not clear. Additionally, native lens lipids have been
reported to impact Lim2 subunit assembly, but the details underlying this phenomenon have not been
explored. As a result of the scarcity of experimental research on Lim2-native lipid interactions (Aim 2), I will use
native MS to identify specific lipid interactions and determine how they affect Lim2 structure. My findings will
aid researchers develop therapeutic targets and/or practices that can prevent, reverse or delay cataract
formation.
摘要/摘要:白内障是全球失明的主要原因,使美国医疗保健系统造成了损失
每年数十亿美元用于手术治疗。镜头无情已与主要功能障碍有关
膜蛋白,Aquaporin-0(AQP0)和LIM2。我项目的总体目标是开发
对蛋白质 - 蛋白质蛋白和蛋白质脂质相互作用的结构和功能的全面理解
这些膜蛋白。在没有血液供应的情况下,微循环系统运输营养
并去除对内部纤维细胞的废物,对于维持晶状体透明度数十年是至关重要的。
但是,如何建立和维持随着年龄的函数建立和维护该微循环系统
理解。使用高级质谱技术,例如氢 - 偏见交换-MS,
我打算阐明特定蛋白质和脂质相互作用的天然MS和化学交联研究
影响AQP0和LIM2的结构和功能;膜蛋白是至关重要的
镜头的微循环系统。最丰富的镜头膜蛋白AQP0在
晶状体纤维细胞的粘附和水的渗透性,与与水的渗透率相互作用
钙结合蛋白,钙调蛋白。我实验室和其他人的数据表明,钙调蛋白与
AQP0的C末端尾部;但是,分子动力学(MD)模拟表明非经典相互作用
带有AQP0的胞质环。该MD预测尚未经过实验验证。除了AQP0-
蛋白质相互作用(AIM 1),我假设AQP0-脂质相互作用(AIM 2)调节AQP0渗透性和
透镜透明度的粘附特性;但是,关于AQP0交互的报告有限
与天然脂质。鉴于AQP0在维持晶状体透明度及其与白内障的联系中的重要作用,
了解与蛋白质(例如钙调蛋白和本地脂质)的调节性相互作用将阐明其在
微循环系统。镜头中第二大最丰富的膜蛋白是LIM2,就像AQP0一样,
突变与小鼠的白内施术相关。但是,关于lim2-蛋白的知之甚少
互动(目标1)。据报道,与LIM2的结合伙伴,即钙调蛋白和Galectin-3,但如何
这些相互作用调节LIM2结构和功能尚不清楚。此外,本地透镜脂质已经
据报道会影响LIM2亚基组装,但这种现象的细节尚未
探索。由于缺乏针对LIM2本地脂质相互作用的实验研究(AIM 2),我将使用
天然MS确定特定的脂质相互作用并确定它们如何影响LIM2结构。我的发现会
援助研究人员开发可以预防,逆转或延迟白内障的治疗目标和/或实践
形成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carla O'Neale其他文献
Carla O'Neale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carla O'Neale', 18)}}的其他基金
Structural analysis of protein-protein and protein-lipid interactions of lens membrane proteins.
晶状体膜蛋白的蛋白质-蛋白质和蛋白质-脂质相互作用的结构分析。
- 批准号:
10313202 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Structural analysis of protein-protein and protein-lipid interactions of lens membrane proteins.
晶状体膜蛋白的蛋白质-蛋白质和蛋白质-脂质相互作用的结构分析。
- 批准号:
10542473 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
- 批准号:
10636089 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Evaluation of extracellular matrix gel for adhesion prevention and tissue healing intendon surgery
细胞外基质凝胶预防粘连和组织愈合意向手术的评价
- 批准号:
10482261 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Placental resistance and response to the teratogenic pathogen Toxoplasma gondii
胎盘对致畸病原体弓形虫的抵抗力和反应
- 批准号:
10453973 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Placental resistance and response to the teratogenic pathogen Toxoplasma gondii
胎盘对致畸病原体弓形虫的抵抗力和反应
- 批准号:
10600051 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
PET Imaging of Vaso-Occlussive Crisis in Sickle Cell Disease
镰状细胞病血管闭塞危象的 PET 成像
- 批准号:
10366801 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别: