A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
基本信息
- 批准号:10507532
- 负责人:
- 金额:$ 20.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAffinityAptitudeArchitectureAreaBasic ScienceBenzodiazepinesBindingBinding ProteinsBioinformaticsBiologicalBiological AssayBiological PharmacologyBuprenorphineCause of DeathCessation of lifeChemical ModelsChronic DiseaseClinicalClinical DataClinical Decision Support SystemsClinical InformaticsClinical SkillsComplementComputer AnalysisComputer softwareCounselingCreativenessDataData SetDatabasesDevelopmentDiagnosisDockingDrug CombinationsDrug InteractionsDrug PrescriptionsDrug usageElectronic Health RecordEnvironmentEthnic OriginEventFDA approvedFinancial HardshipFundingGenderGoalsGrantGraphHealthHealthcare SystemsHigh PrevalenceHumanImpaired cognitionIn VitroIncidenceK-Series Research Career ProgramsKnowledgeMedicineMentorsMethadoneMethodologyMethodsNaltrexoneOpiate AddictionOpioidOutcomeOverdoseOverdose reductionPathway interactionsPatientsPerformancePharmaceutical PreparationsPharmacologyPolypharmacyPredictive AnalyticsProteinsProtocols documentationQuality of lifeROC CurveRaceRecoveryRegimenRelapseReportingResearchResearch PersonnelResearch ProposalsResearch TrainingSamplingSeveritiesSiteSoftware ToolsStatistical Data InterpretationSupervisionTestingTobacco useTrainingUnited StatesValidationVentilatory Depressionaddictionadverse drug reactionbasecareercareer developmentclinical decision supportclinical practicecohortcostdeep learningdeep learning modeldesigndrug discoveryexperiencefallsgraph theoryimprovedindividual patientinformatics trainingknowledge graphmedication-assisted treatmentnew therapeutic targetnovelnovel therapeuticsopioid epidemicopioid overdoseopioid useopioid use disorderpatient safetypredictive modelingprescription opioidside effectskillsstandard of caretreatment guidelinesvector
项目摘要
PROJECT SUMMARY
This proposal for a mentored career development award consists of a training and research plan to facilitate Dr.
Zackary Falls' transition to an independent investigator focusing on translational bioinformatics for patient tailored
predictive analytics related to opioid addiction severity. The opioid epidemic is a major concern in the United
States that is exacerbated due to the high prevalence of prescribing two or more drugs to patients living with
opioid use disorder, which increases the likelihood of adverse drug reactions (ADRs) occurring in these patients.
Knowing and predicting drug–drug interactions (DDIs) and resulting ADRs is critical for the safety of patients, but
ADR prediction software tools used in clinical practice have many limitations. Firstly, most DDI databases used
in these software tools are incomplete because they incorporate only pair–wise DDIs. Additionally, most software
tools do not incorporate biological mechanism of action information for the drugs and omit relevant patient–
specific clinical data such as diagnoses, tobacco use, etc. Dr. Falls aims to exceed the efficacy of these software
with the creation of embedded representations for each patient's prescription profile, leveraging both drug–protein
interaction knowledge about the prescription drugs and patient level clinical data pertaining to polypharmacy and
ADRs. The specific aims of this research are to predict and validate novel off–target proteins for opioids and
other commonly co–prescribed medications (Aim 1), extract polypharmacy interactions and ADR relationships
from electronic health records of opioid prescription patients (Aim 2), and design a patient personalized software
that uses deep–learning architecture to predict severe ADRs caused by opioid related polypharmacy interactions
(Aim 3) to be integrated with clinical decision support systems for the benefit of patients and clinicians. The ap-
plicant has detailed a rigorous plan containing three career development goals for gaining the skills and expertise
to accomplish his research aims. These goals include: Goal 1. Gain knowledge in addiction research and phar-
macology as it relates to opioid use, Goal 2. Acquire advanced statistical analysis skills for clinical datasets, and
Goal 3. Increase understanding of graph theory and knowledge graph implementation. The team of mentors and
collaborators that has been assembled by Dr. Falls, including Prof. Ram Samudrala as primary mentor, perfectly
accounts for expertise in research areas that the applicant will be investigating and have knowledge in domains
that complement his own understandings to aid in the career development aspect of this proposal. Dr. Falls has
the aptitude, creativity, and perseverance to become an excellent researcher. The support of this K01, guidance
from his terrific team of mentors and collaborators, and the influence of a rich research environment will enable
him to further develop his skills and knowledge. He will surely accomplish all of his career development goals
and research aims, become a successful independent investigator, and flourish in his career.
项目摘要
这项指导职业发展奖的提案包括一项培训和研究计划,以促进博士。
Zackary Falls向独立研究者的过渡,专注于针对患者量身定制的转化生物信息学
预测性分析与绿化成瘾的严重程度有关。 opioid流行是曼联的主要关注点
由于针对患者的两种或多种药物的处方率高而加剧的状态
Opioid使用障碍,增加了这些患者发生不良药物反应(ADR)的可能性。
了解和预测药物与药物相互作用(DDI)和由此产生的ADR对于患者的安全至关重要,但是
临床实践中使用的ADR预测软件工具有许多局限性。首先,大多数使用的DDI数据库
在这些软件工具中,由于它们仅合并了Paire -Wise DDI,因此不完整。另外,大多数软件
工具不包含用于药物的动作信息的生物学机制,并忽略相关患者 -
特定的临床数据,例如诊断,烟草使用等。Falls博士旨在超过这些软件的效率
随着为每个患者的处方药创建嵌入式表示形式,利用这两种药物 - 蛋白
有关处方药和患者水平临床数据的相互作用知识与多药有关
ADR。这项研究的特定目的是预测和验证阿片类药物的新颖核心蛋白质蛋白
其他常见的共同处方药(AIM 1),提取多药相互作用和ADR关系
从阿片类药物处方患者的电子健康记录(AIM 2),并设计患者个性化软件
它使用深度学习结构来预测阿片类药物相关的多药相互作用引起的严重ADR
(AIM 3)将与患者和临床医生的益处纳入临床决策支持系统。 ap-
Plicant详细介绍了一个严格的计划,其中包含三个职业发展目标,以获得技能和专业知识
为了完成他的研究目的。这些目标包括:目标1。在成瘾研究和phal中获得知识
与阿片类药物使用有关的宏观学,目标2。获得临床数据集的高级统计分析技能,以及
目标3。增加对图理论和知识图实现的理解。导师团队和
由Falls博士组装的合作者,包括Ram Samudrala教授,是主要的,完美的
申请人将在研究领域进行研究并在领域中具有知识的研究领域的专业知识。
这补充了他自己的理解,以帮助这一提议的职业发展方面。福尔斯博士有
成为一名优秀研究人员的才能,创造力和毅力。这个K01的支持,指导
从他的导师和合作者团队中,以及丰富的研究环境的影响将使
他一定会实现自己的所有职业发展目标
研究的目的是,成为成功的独立研究者,并在他的职业生涯中浮现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zackary Michael Falls其他文献
Zackary Michael Falls的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zackary Michael Falls', 18)}}的其他基金
A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
- 批准号:
10664024 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
- 批准号:
10664024 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别:
Developing a multivalent agent for long-lasting treatment of diabetic macular edema
开发用于长期治疗糖尿病黄斑水肿的多价药物
- 批准号:
10324534 - 财政年份:2021
- 资助金额:
$ 20.93万 - 项目类别:
Fully modified bispecific aptamer for effective combination therapy of neovascular ocular diseases
完全修饰的双特异性适体可有效联合治疗新生血管性眼病
- 批准号:
9909857 - 财政年份:2020
- 资助金额:
$ 20.93万 - 项目类别:
Targeting SDF-1 for effective wet AMD treatment
靶向 SDF-1 进行有效的湿性 AMD 治疗
- 批准号:
10224211 - 财政年份:2020
- 资助金额:
$ 20.93万 - 项目类别: