Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
基本信息
- 批准号:10502819
- 负责人:
- 金额:$ 11.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-23 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgingAnabolismAutomobile DrivingBiochemicalCarbohydratesCardiovascular DiseasesCardiovascular systemClinicalDataDefectDevelopmentDiabetes MellitusDiseaseDisuse AtrophyEffectivenessEventExhibitsFOXO1A geneFunctional disorderGeneticGlucoseGlucose IntoleranceGoalsGrowthHomeostasisHormonesHumanHyperglycemiaIndividualInsulinInsulin ResistanceInsulin Signaling PathwayInvestigationIsotope LabelingKnowledgeMeasuresMediatingMedicalMetabolicMetabolic ControlMetabolic DiseasesMitochondriaModelingMolecularMolecular TargetMusMuscleMuscle MitochondriaMuscle ProteinsMuscle functionMuscular AtrophyNon-Insulin-Dependent Diabetes MellitusOrganPathway interactionsPerformancePharmacologyPhosphotransferasesPilot ProjectsPlayProtein BiosynthesisProtein-Serine-Threonine KinasesProto-Oncogene Proteins c-aktRegulationResearchRoleSignal PathwaySignal TransductionSkeletal MuscleTechniquesTestingTherapeutic InterventionTimeTreatment Efficacyadenylate kinaseblood glucose regulationcarbohydrate metabolismdiabeticexperimental studygenetic manipulationglucose disposalglucose metabolismglucose uptakeimprovedin vivoinsulin mediatorsinsulin sensitivityinsulin signalinginterestmetabolomicsmitochondrial dysfunctionmolecular modelingmuscle formnew therapeutic targetnovel therapeuticsphosphoproteomicspreservationprotein degradationprotein metabolismrestorationskeletal muscle growthskeletal muscle metabolismskeletal muscle wastingstemuptakewasting
项目摘要
Project Summary
The number of individuals with type 2 diabetes mellitus (T2DM) remains at an all-time high and is predicted to
increase over the next decade. Therefore, it is of significant medical interest to define the underlying mechanisms
driving T2DM to improve therapeutic efficacy. Insulin resistance, a condition known as reduced effectiveness to
the hormone insulin, is associated with altered glucose homeostasis and muscle dysfunction. Despite decades
of investigation, critical knowledge gaps remain in the molecular mechanisms that are responsible for the
initiation and propagation of insulin resistance. The skeletal muscle plays a significant role in glucose
homeostasis and accounts for a majority of glucose disposal following a meal. Defects in the insulin signaling
pathway in the skeletal muscle have been hypothesized to be the primary cause of insulin resistance leading to
hyperglycemia, altered protein metabolism and cardiovascular disease. Accumulating evidence has implicated
the serine/threonine kinase Akt (protein kinase B) as a critical regulator of insulin action. To directly test the
hypothesis that reduced insulin signaling via AKT causes insulin resistance and alters muscle function, we
generated mice that lack AKT signaling specifically in skeletal muscle and surprisingly found that insulin can
stimulate skeletal muscle glucose uptake and utilization in the absence of AKT. These data are inconsistent with
the canonical molecular model of insulin resistance and suggest AKT is not an obligate intermediate in the control
of skeletal muscle glucose metabolism by insulin in all conditions. The identification of this AKT-independent
pathway and its role carbohydrate homeostasis will be the focus of Aim 1 of this proposal. Although mice lacking
AKT in skeletal muscle have normal glucose uptake and insulin sensitivity, we found that they nevertheless
exhibit significant muscle atrophy and mitochondrial dysfunction with a corresponding defect in muscle
performance, confirming that AKT is required for muscle growth and function in vivo. The downstream
mechanisms responsible for AKT’s control of muscle growth and function will be defined in Aim 2. Collectively,
this proposal will build upon these important observations and elucidate the Akt-dependent and independent
pathways that control the metabolic actions of insulin in vivo. These experiments have the potential to profoundly
affect our mechanistic understanding of the pathways underlying insulin resistance and will lead to the
identification of new therapeutic targets for T2DM, cardiovascular and skeletomuscular diseases.
项目摘要
2型糖尿病(T2DM)的个体数量保持在历史最高水平,预测为
因此,在接下来的十年中,定义基本机制具有重大的医疗兴趣
驱动T2DM提高治疗效率。
激素胰岛素与葡萄糖稳态和肌肉功能障碍有关
在调查中,关键知识差距仍然存在于负责该的分子机制中。
胰岛素抵抗的起始和传播。
在胰岛素信号中,稳态和大部分葡萄糖处置。
骨骼肌中的途径也假设是胰岛素抵抗的主要原因
高血糖,蛋白质的代谢改变和心血管疾病。
丝氨酸/苏氨酸激酶Akt(蛋白激酶B)作为胰岛素作用的关键调节剂。
假设通过AKT减少胰岛素信号传导会引起胰岛素抵抗和改变肌肉功能,我们
在骨骼肌中缺乏AKT信号的小鼠,令人惊讶地发现胰岛素可以可以
在没有AKT的情况下,刺激骨骼肌葡萄糖的吸收和利用。
对照中中间的规范分子模型
胰岛素在所有条件下都可以识别胰岛素的骨骼肌肉代谢。
途径和角色碳水化合物稳态将成为目标1的重点。
AKT骨骼肌的葡萄糖吸收和胰岛素敏感性正常,我们发现它们仍然
表现出显着的萎缩萎缩和线粒体功能障碍,肌肉中的相应缺陷
性能,证实我需要在下游的肌肉生长和功能
AIM 2将定义负责AKT控制肌肉和功能的机制。
该提议将基于重要的观察,并阐明Akt偏见和独立
控制体内胰岛素的化学作用的途径。
影响我们对胰岛素抵抗潜在途径的机械理解,并将导致您
鉴定T2DM,心血管和骨骼肌肉疾病的新治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Michael Titchenell其他文献
Paul Michael Titchenell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Michael Titchenell', 18)}}的其他基金
Hepatic mTORC1 Signaling and the Regulation of Lipid Homeostasis
肝脏 mTORC1 信号转导和脂质稳态的调节
- 批准号:
10552696 - 财政年份:2021
- 资助金额:
$ 11.58万 - 项目类别:
Hepatic mTORC1 Signaling and the Regulation of Lipid Homeostasis
肝脏 mTORC1 信号转导和脂质稳态的调节
- 批准号:
10352468 - 财政年份:2021
- 资助金额:
$ 11.58万 - 项目类别:
Hepatic mTORC1 Signaling and the Regulation of Lipid Homeostasis
肝脏 mTORC1 信号转导和脂质稳态的调节
- 批准号:
10207893 - 财政年份:2021
- 资助金额:
$ 11.58万 - 项目类别:
Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
- 批准号:
10349576 - 财政年份:2020
- 资助金额:
$ 11.58万 - 项目类别:
Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
- 批准号:
10327861 - 财政年份:2020
- 资助金额:
$ 11.58万 - 项目类别:
Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
- 批准号:
10569040 - 财政年份:2020
- 资助金额:
$ 11.58万 - 项目类别:
Insulin regulation of glucose metabolism independent of hepatic Akt
胰岛素对葡萄糖代谢的调节不依赖于肝脏 Akt
- 批准号:
8649460 - 财政年份:2013
- 资助金额:
$ 11.58万 - 项目类别:
相似国自然基金
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
- 批准号:82360625
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 11.58万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 11.58万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 11.58万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 11.58万 - 项目类别: