Improving the interpretability of genetic studies of major depressive disorder to identify risk genes
提高重度抑郁症基因研究的可解释性以识别风险基因
基本信息
- 批准号:10504696
- 负责人:
- 金额:$ 61.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-16 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:BiologicalBiological databasesBiologyBipolar DisorderClinicalCodeComputerized Medical RecordDataDevelopmentDiagnosisDiseaseElectronic Health RecordEnsureEtiologyFactor AnalysisGenesGeneticGenetic RiskGenetic studyGenotypeGoalsGoldHeritabilityHeterogeneityIndividualInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)InterviewJointsLightMajor Depressive DisorderMeasuresMental DepressionMental disordersMethodsMoodsPathogenicityPathway interactionsPatientsPhenotypeProcessResearchResidual stateRiskSample SizeSamplingSchizophreniaSequence AnalysisSignal TransductionSilverSpecificityStatistical MethodsSymptomsTestingTimeTissuesVariantbasebiobankcase controlclinical diagnosiscognitive changecohortcomorbiditycostdeep learningdiagnosis standarddisabilitydysphoriaeffective therapyexomefamily geneticsgenetic approachgenetic architecturegenetic risk factorgenetic testinggenome wide association studyimprovedinsightloss of functionmeetingsnegative affectnon-geneticnovelphenotyping algorithmportabilityrare variantrisk variantsecondary outcometrait
项目摘要
Project Summary
This project aims to advance our understanding of major depressive disorder (MDD) through the analysis of
electronic medical records, biobanks and associated genetic data. MDD is the commonest psychiatric disorder
and recognized as the world’s leading cause of disability, yet current treatments are relatively ineffective: only
about half of patients will show signs of improvement after three months of therapy. Genetic approaches are a
proven path to identifying causal factors and hence finding novel treatments, but they are hard to apply to MDD
without obtaining large samples of cases. We propose using the very large numbers of cases available through
electronic medical records by applying statistical methods that accurately identify MDD. Our methods provide a
“best-guess” diagnosis by a process known as imputation. We then identify features that are specific to MDD.
Our insight is that since non-genetic and non-specific factors explain large components of variability in traditional
MDD phenotypes, algorithmically removing them increases the signal from the core biological drivers. We
assume that non-specificity can be attributed to latent factors capturing the relationship between MDD, comorbid
disease, and pleiotropic factors. By identifying and removing these signals, we increase specificity, and thus
identify features that reflect the episodic severe shifts of mood, associated with neurovegetative and cognitive
changes, that are central to MDD. Our project has three aims: first, to impute phenotypes of a large sample of
MDD cases and controls in biobank data and determine the best approximation to MDD; second, to identify and
characterise specific and non-specific genetic effects on MDD, and finally to identify genes involved in MDD by
associating the cases defined via our first two aims with rare coding variants.
项目概要
该项目旨在通过分析以下内容来加深我们对重度抑郁症 (MDD) 的理解:
电子病历、生物库和相关遗传数据是最常见的精神疾病。
并被认为是世界上导致残疾的主要原因,但目前的治疗方法相对无效:仅
经过三个月的治疗后,大约一半的患者会出现改善的迹象。
已被证实的方法可以识别致病因素,从而找到新的治疗方法,但它们很难应用于重度抑郁症
我们建议使用通过以下方式获得的大量案例。
通过应用准确识别 MDD 的统计方法,我们的方法提供了电子病历。
然后,我们通过称为插补的过程进行“最佳猜测”诊断,以确定 MDD 特有的特征。
我们的见解是,由于非遗传和非特异性因素解释了传统遗传变异的很大一部分。
MDD 表型,通过算法去除它们会增加来自核心生物驱动因素的信号。
假设非特异性可归因于捕获 MDD、共病之间关系的潜在因素
通过识别和消除这些信号,我们提高了特异性,从而提高了特异性。
识别反映与植物神经和认知相关的间歇性严重情绪变化的特征
我们的项目有三个目标:第一,估算大量样本的表型。
第二,生物样本库数据中的 MDD 病例和对照,并确定 MDD 的最佳近似值;
描述 MDD 的特异性和非特异性遗传效应,并最终通过以下方法鉴定与 MDD 相关的基因:
将通过我们的前两个目标定义的案例与罕见的编码变体相关联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN FLINT其他文献
JONATHAN FLINT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN FLINT', 18)}}的其他基金
Improving the interpretability of genetic studies of major depressive disorder to identify risk genes
提高重度抑郁症基因研究的可解释性以识别风险基因
- 批准号:
10646326 - 财政年份:2022
- 资助金额:
$ 61.99万 - 项目类别:
Combining Voice and Genetic Information to Detect Heterogeneity in Major Depressive Disorder
结合声音和遗传信息来检测重度抑郁症的异质性
- 批准号:
10656229 - 财政年份:2020
- 资助金额:
$ 61.99万 - 项目类别:
Combining Voice and Genetic Information to Detect Heterogeneity in Major Depressive Disorder
结合声音和遗传信息来检测重度抑郁症的异质性
- 批准号:
10410474 - 财政年份:2020
- 资助金额:
$ 61.99万 - 项目类别:
Combining Voice and Genetic Information to Detect Heterogeneity in Major Depressive Disorder
结合声音和遗传信息来检测重度抑郁症的异质性
- 批准号:
10238767 - 财政年份:2020
- 资助金额:
$ 61.99万 - 项目类别:
Developing a Pathway from Genetic Locus to Gene for Complex Traits in Rodents
开发从遗传位点到啮齿动物复杂性状基因的途径
- 批准号:
10197749 - 财政年份:2018
- 资助金额:
$ 61.99万 - 项目类别:
Developing a Pathway from Genetic Locus to Gene for Complex Traits in Rodents
开发从遗传位点到啮齿动物复杂性状基因的途径
- 批准号:
10361239 - 财政年份:2018
- 资助金额:
$ 61.99万 - 项目类别:
相似国自然基金
功能性前噬菌体数据挖掘及数据库的建立
- 批准号:31900489
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
茶树基因组数据库的构建及核心标记的开发
- 批准号:31760317
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于语义网的微生物多源异构数据整合关键技术研究
- 批准号:31701157
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
建设中国斑马鱼品系管理和信息分享数据系统
- 批准号:31672378
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
致盲眼病大数据资源和精准防治研究
- 批准号:91546101
- 批准年份:2015
- 资助金额:36.0 万元
- 项目类别:重大研究计划
相似海外基金
Greatwall in replication stress/DNA damage responses and oral cancer resistance
长城在复制应激/DNA损伤反应和口腔癌抵抗中的作用
- 批准号:
10991546 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Oral pathogen - mediated pro-tumorigenic transformation through disruption of an Adherens Junction - associated RNAi machinery
通过破坏粘附连接相关的 RNAi 机制,口腔病原体介导促肿瘤转化
- 批准号:
10752248 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
The role of SERPINB1 in T cell function and its contribution to human diseases
SERPINB1在T细胞功能中的作用及其对人类疾病的贡献
- 批准号:
10659419 - 财政年份:2023
- 资助金额:
$ 61.99万 - 项目类别:
Defining bioactivities of peptides released from human milk proteins in the preterm infant intestine
定义早产儿肠道中母乳蛋白释放的肽的生物活性
- 批准号:
10658669 - 财政年份:2023
- 资助金额:
$ 61.99万 - 项目类别: