Combining Voice and Genetic Information to Detect Heterogeneity in Major Depressive Disorder
结合声音和遗传信息来检测重度抑郁症的异质性
基本信息
- 批准号:10410474
- 负责人:
- 金额:$ 66.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-14 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAnxietyBehavioral GeneticsBiological MarkersBiologyCase-Control StudiesChinaChineseClassificationClinicalClinical ManagementCollectionDataData SetDepressed moodDevelopmentDiagnosisDiseaseDisease remissionDrug PrescriptionsEngineeringEnsureFar EastFrequenciesGeneticGenetic studyGenomicsGenotypeHeritabilityHeterogeneityInterviewInvestigationLinkage DisequilibriumMajor Depressive DisorderManualsMapsMental DepressionMental HealthMental disordersMethodologyMethodsModelingMoodsMorphologic artifactsNeurobiologyParticipantPatientsPatternPersonsPharmacological TreatmentPhenotypePopulationPsychiatryRecurrenceRefractoryResearchResourcesSamplingSchemeSeveritiesSeverity of illnessSignal TransductionSpecificitySpeechSuicideSystemTestingTimeUrsidae FamilyVoiceVoice QualityWomanaccurate diagnosisbasebiobankclinical applicationclinical phenotypecomorbiditycomputer sciencedata sharingdeep neural networkdisabilitydisorder subtypeeffective therapyefficacy evaluationflexibilitygenetic analysisgenetic architecturegenetic informationgenetic predictorsimprovedinnovationinsightlong short term memorymultidimensional dataneuroimagingpreservationpsychogeneticspublic health prioritiesstatisticstargeted treatmenttraittransfer learningtreatment responsevector
项目摘要
PROJECT SUMMARY
This application aims to advance our understanding of major depressive disorder (MDD) by combining genetic
information and analyzing speech patterns of those with MDD to identify subtypes. MDD is the leading cause
of disability throughout the world, yet, relative to other common disorders, less is known about its origins.
There are less effective treatments and much less is spent on trying to understand how it arises and how to
cure it. Current treatments are relatively ineffective, with up 50% of patients refractory and many suffering
severe recurrence. Understanding the mechanisms underlying MDD has been recognized as a grand
challenge in global mental health. Thus, developing new treatments for MDD is a major priority for public health.
A major challenge for MDD research is the presence of heterogeneity. The existence of multiple subtypes of
MDD has been suspected for a long time, and likely confounds the ability to treat the disorder appropriately
with existing treatments, as well as making it hard to identify the causes of MDD as a prelude to developing
new treatments. However finding subtypes has been hard. Given that the way people talk can reflect
alterations in mood, we expect voice to be able to predict mood, and hence potentially be used as biomarker to
recognize heterogeneity. In preliminary data show that in combination with genetic data high-dimensional vocal
features extracted from recordings can be used to identify subtypes. Furthermore, the use of genetic data
allows us to impute voice features into large biobanks where no recordings exist, making it possible to explore
the relationship between vocal features and a rich array of clinically important indicators. We explore the power
of voice to make a diagnosis of MDD, to predict severity and other clinical features. Applying our approach to
will inform clinical management, improving diagnosis, refine treatment and aid the development of new
treatments
项目摘要
该应用旨在通过结合遗传来提高我们对重大抑郁症(MDD)的理解
信息和分析具有MDD患者的语音模式以识别亚型。 MDD是主要原因
全世界的残疾人都相对于其他常见疾病,对其起源的了解较少。
有效的治疗方法较少,而花在试图理解它的出现以及如何的方式上花费了更少
治愈它。目前的治疗相对无效,有50%的患者难治性和许多痛苦
严重的复发。了解MDD的基础机制已被认为是宏伟的
全球心理健康的挑战。因此,为MDD开发新的治疗方法是公共卫生的主要优先事项。
MDD研究的主要挑战是存在异质性。存在多种亚型的存在
MDD长期怀疑,可能会使适当治疗该疾病的能力混淆
使用现有治疗方法,并使很难确定MDD的原因是发展的前奏
新治疗。但是,找到亚型很难。鉴于人们说话的方式可以反映
情绪改变,我们希望声音能够预测情绪,因此有可能用作生物标志物
识别异质性。在初步数据中表明,结合遗传数据高维声音
从录音中提取的功能可用于识别亚型。此外,使用遗传数据
允许我们将语音功能算作不存在录音的大型生物库,从而可以探索
人声特征与一系列临床上重要的指标之间的关系。我们探索力量
诊断为MDD的语音,以预测严重程度和其他临床特征。将我们的方法应用于
将为临床管理提供信息,改善诊断,完善治疗并帮助开发新的
治疗
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN FLINT其他文献
JONATHAN FLINT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN FLINT', 18)}}的其他基金
Improving the interpretability of genetic studies of major depressive disorder to identify risk genes
提高重度抑郁症基因研究的可解释性以识别风险基因
- 批准号:
10504696 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别:
Improving the interpretability of genetic studies of major depressive disorder to identify risk genes
提高重度抑郁症基因研究的可解释性以识别风险基因
- 批准号:
10646326 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别:
Combining Voice and Genetic Information to Detect Heterogeneity in Major Depressive Disorder
结合声音和遗传信息来检测重度抑郁症的异质性
- 批准号:
10656229 - 财政年份:2020
- 资助金额:
$ 66.78万 - 项目类别:
Combining Voice and Genetic Information to Detect Heterogeneity in Major Depressive Disorder
结合声音和遗传信息来检测重度抑郁症的异质性
- 批准号:
10238767 - 财政年份:2020
- 资助金额:
$ 66.78万 - 项目类别:
Developing a Pathway from Genetic Locus to Gene for Complex Traits in Rodents
开发从遗传位点到啮齿动物复杂性状基因的途径
- 批准号:
10197749 - 财政年份:2018
- 资助金额:
$ 66.78万 - 项目类别:
Developing a Pathway from Genetic Locus to Gene for Complex Traits in Rodents
开发从遗传位点到啮齿动物复杂性状基因的途径
- 批准号:
10361239 - 财政年份:2018
- 资助金额:
$ 66.78万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 66.78万 - 项目类别:
Role of mTOR in Circadian and Sleep Deregulation in Smith-Kingsmore Syndrome (SKS)
mTOR 在史密斯-金斯莫尔综合征 (SKS) 昼夜节律和睡眠失调中的作用
- 批准号:
10586191 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别:
The impact of loss of function DNA sequence variants in the human protocadherin gene cluster on neural circuit assembly.
人类原钙粘蛋白基因簇中功能丧失 DNA 序列变异对神经回路组装的影响。
- 批准号:
10736632 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别:
Chronic Murine Cerebral Mycosis: Pathogenesis, Neuroimmune Response, and Relevance to Alzheimer's Disease
慢性鼠脑真菌病:发病机制、神经免疫反应以及与阿尔茨海默病的相关性
- 批准号:
10723848 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别:
Assess Neural Circuits and Subtypes Underlying Dimensions of Neuropsychiatric Symptoms in Alzheimer's Disease
评估阿尔茨海默病神经精神症状的神经回路和亚型
- 批准号:
10741906 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别: