Complementary animal and computational models for biomarker identification in ascending thoracic aortic aneurysm
升主动脉瘤生物标志物识别的补充动物和计算模型
基本信息
- 批准号:10503513
- 负责人:
- 金额:$ 62.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgeAneurysmAnimal ModelAortaAutopsyBiological MarkersBiomechanicsBiophysicsBlood flowCadaverCaliberCategoriesCessation of lifeClinicalComputer ModelsComputer SystemsCoupledDangerousnessDataDisease OutcomeDissectionEquilibriumEventExperimental ModelsFailureGeneticGeometryGrowthGuidelinesHumanImageIndividualInterventionLiquid substanceLiteratureLongitudinal StudiesMachine LearningMarfan SyndromeMechanicsModelingMonitorMusOperative Surgical ProceduresOutcomePatient imagingPatient-Focused OutcomesPatientsPrincipal Component AnalysisPublishingReproducibilityRiskRuptureScanningShapesSolidStressSystemTestingThoracic Aortic AneurysmTimeTissue ModelTissuesTrainingWorkbasebiomarker identificationcardiovascular healthcostexperienceexperimental studyfallshemodynamicshuman datahuman tissuemechanical propertiesmouse modelnoveloutcome predictionpublic health relevancerepairedsimulationsurgical risktoolvirtualvirtual humanvirtual patient
项目摘要
ABSTRACT
Ascending thoracic aortic aneurysm (ATAA) is a major cardiovascular health problem characterized by
a dilated aorta that may eventually dissect or rupture. ATAA presents a serious challenge in that the surgery is
difficult and dangerous, so aneurysm repair criteria must balance the risk of a dissection and/or rupture with
the risk of surgery. Current surgical guidelines are based on ATAA diameter or growth rate, but up to 60% of
patients with an ATAA experience a dissection before surgical criteria are reached, hence there is a clear need
for additional biomarkers of aneurysm failure. Possible biomarkers fall into broad categories including genetic,
microstructural, geometrical, and biofluids, but it is challenging to obtain enough human data to calculate and
correlate these biomarkers with critical outcomes such as failure. It is likely that a single biomarker is not
sufficient, but composite biomarkers that are not intuitively obvious may be necessary for significant predictions
of patient outcomes. In this proposal we will use a combination of models: 1) a mouse model of ATAA
associated with Marfan Syndrome, 2) a multiscale, multiphysics model of ATAA growth and remodeling, and 3)
virtual patient models derived from real patient imaging data, to determine composite biomarkers that may
predict ATAA growth, progression, and failure. Our first Specific Aim is to use a genetic mouse model of ATAA
associated with Marfan Syndrome to characterize aneurysm progression and failure in previously unachieved
detail, quantifying aortic shape, tissue composition, tissue mechanical properties, and hemodynamics over
time. This level of detail is not possible in human patients and is necessary to validate and test hypotheses on
the growth and remodeling rules in our multiscale, multiphysics model in Specific Aim 2 and to provide an initial
set of biomarkers to evaluate for our virtual patients in Specific Aim 3. Our second Specific Aim is to develop a
novel multiscale, multiphysics computational model of ATAA growth and remodeling to produce results that will
be compared to the mouse data in Specific Aim 1 and used to predict remodeling progression in real and
virtual human patients in Specific Aim 3. In our third Specific Aim, we will use available human ATAA scans
from Marfan Syndrome patients to generate a statistical shape model basis for the ATAA geometry, and we will
use that basis to generate virtual patients, whose TAA course throughout progression and failure will be
created by the model in Specific Aim 2, with parameters determined from published literature and our mouse
data in Specific Aim 1. Both real and virtual patient data will then be used to train a machine learning tool to
relate the composite biomarkers to the remodeling outcomes and predict failure risk. This plan synthesizes
multiple recent advances and supplements them with new ideas to produce a computer system capable of
making useful failure predictions for ATAA.
抽象的
胸主动脉瘤(ATAA)是一种主要的心血管健康问题,其特征是
扩张的主动脉最终可能会解剖或破裂。 ATAA 提出了严峻的挑战,因为手术
困难且危险,因此动脉瘤修复标准必须平衡夹层和/或破裂的风险
手术的风险。目前的手术指南是基于 ATAA 直径或生长率,但高达 60%
ATAA 患者在达到手术标准之前经历了解剖,因此显然需要
寻找动脉瘤失败的其他生物标志物。可能的生物标志物分为广泛的类别,包括遗传、
微观结构、几何和生物流体,但获取足够的人类数据来计算和
将这些生物标志物与失败等关键结果相关联。单个生物标志物很可能不是
足够但直观上不明显的复合生物标志物可能是重要预测所必需的
患者的治疗结果。在本提案中,我们将使用模型组合:1)ATAA 小鼠模型
与马凡氏综合症相关,2) ATAA 生长和重塑的多尺度、多物理模型,以及 3)
从真实患者成像数据导出的虚拟患者模型,以确定可能的复合生物标志物
预测 ATAA 的生长、进展和失败。我们的第一个具体目标是使用 ATAA 基因小鼠模型
与马凡氏综合症相关,以表征以前未实现的动脉瘤进展和失败
细节,量化主动脉形状、组织成分、组织机械特性和血流动力学
时间。这种详细程度在人类患者中是不可能的,并且对于验证和测试假设是必要的
具体目标 2 中我们的多尺度、多物理场模型中的增长和重塑规则,并提供初始
一组生物标志物,用于在特定目标 3 中评估我们的虚拟患者。我们的第二个特定目标是开发
ATAA 生长和重塑的新颖多尺度、多物理计算模型,以产生将产生的结果
与特定目标 1 中的小鼠数据进行比较,并用于预测真实和
Specific Aim 3 中的虚拟人类患者。在我们的第三个 Specific Aim 中,我们将使用可用的人体 ATAA 扫描
来自马凡氏综合症患者的数据,为 ATAA 几何形状生成统计形状模型基础,我们将
使用该基础生成虚拟患者,其 TAA 整个进展和失败的过程将是
由特定目标 2 中的模型创建,参数根据已发表的文献和我们的鼠标确定
具体目标 1 中的数据。然后,真实和虚拟患者数据将用于训练机器学习工具
将复合生物标志物与重塑结果联系起来并预测失败风险。这个计划综合了
多项最新进展,并用新想法对其进行补充,以产生能够
为 ATAA 做出有用的故障预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VICTOR H BAROCAS其他文献
VICTOR H BAROCAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VICTOR H BAROCAS', 18)}}的其他基金
SPINE-WORK: An inclusive research community to study and improve force-based manipulations for spine pain
SPINE-WORK:一个包容性研究社区,致力于研究和改进基于力量的脊柱疼痛治疗方法
- 批准号:
10612059 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
Complementary animal and computational models for biomarker identification in ascending thoracic aortic aneurysm
升主动脉瘤生物标志物识别的补充动物和计算模型
- 批准号:
10646286 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
SPINE-WORK: An inclusive research community to study and improve force-based manipulations for spine pain
SPINE-WORK:一个包容性研究社区,致力于研究和改进基于力量的脊柱疼痛治疗方法
- 批准号:
10458296 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
TRACTOR: A Computational Platform to Explore Matrix-Mediated Mechanical Communication among Cells
TRACTOR:探索细胞间基质介导的机械通信的计算平台
- 批准号:
10515967 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
TRACTOR: A Computational Platform to Explore Matrix-Mediated Mechanical Communication among Cells
TRACTOR:探索细胞间基质介导的机械通讯的计算平台
- 批准号:
10707957 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
Multidisciplinary training in cardiovascular engineering
心血管工程多学科培训
- 批准号:
10208935 - 财政年份:2019
- 资助金额:
$ 62.38万 - 项目类别:
Multidisciplinary training in cardiovascular engineering
心血管工程多学科培训
- 批准号:
10468303 - 财政年份:2019
- 资助金额:
$ 62.38万 - 项目类别:
Multidisciplinary training in cardiovascular engineering
心血管工程多学科培训
- 批准号:
10646305 - 财政年份:2019
- 资助金额:
$ 62.38万 - 项目类别:
Multiscale Model of Ascending Thoracic Aortic Aneurysm
升胸主动脉瘤的多尺度模型
- 批准号:
10181130 - 财政年份:2018
- 资助金额:
$ 62.38万 - 项目类别:
Multiscale Model of Ascending Thoracic Aortic Aneurysm
升胸主动脉瘤的多尺度模型
- 批准号:
10220118 - 财政年份:2018
- 资助金额:
$ 62.38万 - 项目类别:
相似国自然基金
基于CTA血流动力学组学智能评估颅内小动脉瘤稳定性的研究
- 批准号:82302300
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
β-羟基丁酸通过分子伴侣介导的自噬降低巨噬细胞中NLRP3表达在腹主动脉瘤发展中的机制研究
- 批准号:82300536
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PP2A调控内皮细胞EndMT促进腹主动脉瘤发展的机制研究
- 批准号:82370488
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Tet2缺失介导的不确定潜能的克隆性造血(CHIP)调控NLRP3/IL-1β在腹主动脉瘤发生发展中的作用和机制
- 批准号:82371594
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
个体化颅内动脉瘤血管支架耦合系统数字孪生建模与智能推演
- 批准号:62372441
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Understanding vascular aging-related dementia through medin signaling
通过 medin 信号传导了解血管老化相关痴呆
- 批准号:
10901026 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别:
Modeling and Therapeutic Approaches for Genetic Vasculopathies
遗传性血管病的建模和治疗方法
- 批准号:
10706537 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
Complementary animal and computational models for biomarker identification in ascending thoracic aortic aneurysm
升主动脉瘤生物标志物识别的补充动物和计算模型
- 批准号:
10646286 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
Hemodynamically induced molecules regulating the initiation of intracranial aneurysms
血流动力学诱导分子调节颅内动脉瘤的发生
- 批准号:
10592695 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别: