Systematically mapping variant effects for cardiovascular genes
系统地绘制心血管基因的变异效应
基本信息
- 批准号:10501975
- 负责人:
- 金额:$ 208.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-25 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Amino AcidsArrhythmiaAtherosclerosisAtlasesAutomobile DrivingBar CodesBenignBiologicalBiological AssayBiologyCalciumCalmodulinCardiac MyocytesCardiomyopathiesCardiopulmonary ResuscitationCardiovascular DiseasesCardiovascular systemCause of DeathCell SizeCellsCellular AssayChildClinicalClinical ManagementClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsCommunitiesDNADataDecision Support SystemsDevelopmentDiagnosisDiseaseDyslipidemiasElectrocardiogramElectrophysiology (science)Environmental Risk FactorFamilyFamily memberFunctional disorderGene FrequencyGene TargetingGenesGeneticGenomic SegmentGenomic medicineHeart ArrestHeart DiseasesHeart failureHumanImmunofluorescence ImmunologicIn SituIndividualIon ChannelLettersLifeLipoproteinsLow-Density LipoproteinsMapsMeasuresMedical centerMedicineMembrane ProteinsMinorMolecularMutagenesisNucleotidesPathogenesisPathogenicityPatientsPerformancePhenotypeProteinsPublicationsReagentResearch PersonnelResourcesScientistSiteStandardizationSurfaceSystemTertiary Protein StructureTestingTimeToxinUncertaintyUpdateVariantVascular DiseasesVisionZebrafishagedbasecardiovascular effectscell growthclinical careclinical diagnosiscohortdisabilitydrug developmentexperiencegenetic testinggenetic variantgenome sequencinggenome wide association studyheart rhythmhigh throughput screeningimprovedin vitro Assayinduced pluripotent stem cellinsightlipid disordermachine learning modelnovelpatch clampprotein functionprotein structurepublic databaserare variantresponsetraituptake
项目摘要
Cardiovascular diseases are leading global causes of death and disability, presenting as interrelated
phenotypes of atherosclerotic vascular disease, heart failure, and arrhythmias. They arise from interactions
between environmental factors and common and rare genetic variants, including relatively common Mendelian
lipid disorders, cardiomyopathies, and arrhythmias that collectively occur in at least 1/100 individuals. The
availability of genetic sequencing is altering clinical management, but a major barrier to the widespread
application of this practice is that the function of the vast majority of variants in key cardiovascular
disease genes is unknown. Variant effect maps that define function for nearly all missense variants in a target
sequence offer a way forward. This project brings together scientists at the forefront of variant effect mapping in
diverse cellular systems, illuminating underlying cardiovascular biology, establishing relationships between
variant function and human phenotypes, and working with others in multi-institutional collaborations. Our
CardioVar team will generate a comprehensive atlas of variant effect maps for key cardiovascular
disease genes.
In Aim 1, we will develop, optimize, and validate a range of high-throughput cellular assays. We will use a
range of generalizable (e.g. surface abundance) and bespoke (e.g. electrophysiological, lipoprotein uptake)
assays to directly measure variant function in disease-relevant context. Assays will be assessed by their ability
to discriminate pathogenic from benign variants.
In Aim 2, we will use in situ targeted mutagenesis or insertion of variant constructs at a safe harbor site to
generate pools of cells capturing all single-nucleotide changes in target genes. We will then deploy existing
validated assays and those emerging from Aim 1 to generate and validate variant effect maps at scale. Functional
scores and uncertainty estimates will be derived and evaluated, both by performance on pathogenic and benign
variants and on correlation with discrete and quantitative phenotypes in clinical cohorts.
In Aim 3, we will derive biological and clinical insights from variant effect maps. Discordant cases, where
variant scores diverge from clinical annotation, will be further investigated in zebrafish, iPSC-cardiomyocytes,
and automated patch clamping systems. Through a combination of hypothesis-driven analysis and machine
learning models, we will reveal relationships among variant effects, protein structure, protein function, and human
phenotypes. To optimize use of the atlas, we will provide a portal serving as a variant-centric decision support
system for evaluating functional evidence of pathogenicity. We will release variant effect map data pre-
publication via MaveDB (that we co-developed) and share all renewable variant assay reagents.
The CardioVar atlas of missense variant effects, covering key cardiovascular disease genes, will be an
essential and interpretable community resource for clinical and mechanistic studies of cardiovascular disease.
心血管疾病是全球死亡和残疾的主要原因,以相互关联为
动脉粥样硬化血管疾病,心力衰竭和心律不齐的表型。它们来自互动
在环境因素与常见和稀有遗传变异之间,包括相对常见的孟德尔人
脂质疾病,心肌病和心律不齐,至少在1/100个个体中发生。这
遗传测序的可用性正在改变临床管理,但是广泛的主要障碍
这种做法的应用是,钥匙心血管中绝大多数变体的功能
疾病基因尚不清楚。定义目标中所有错义变体功能的变体效应图
序列提供了前进的方向。该项目将科学家汇集到了变体效应映射的最前沿
各种细胞系统,阐明了潜在的心血管生物学,建立了关系
变体功能和人类表型,并与其他人合作进行多机构合作。我们的
Cardiovar团队将为钥匙心血管生成一个全面的变体效应图图地图集
疾病基因。
在AIM 1中,我们将开发,优化和验证一系列高通量细胞分析。我们将使用一个
可推广(例如表面丰度)和定制范围(例如电生理,脂蛋白摄取)
在与疾病有关的情况下直接测量变异功能的测定。测定将根据其能力进行评估
将致病性与良性变体区分开。
在AIM 2中,我们将使用原位靶向诱变或在安全港地点插入变体构造
生成捕获目标基因中所有单核苷酸变化的细胞池。然后,我们将部署现有
经过验证的测定和从AIM 1出现的测定法以生成和验证变异效应图表。功能
分数和不确定性估计将得出和评估,无论是通过致病性和良性表现
变体以及与临床队列中离散和定量表型的相关性。
在AIM 3中,我们将从变异效应图中得出生物学和临床见解。不一致的情况,哪里
斑马鱼,IPSC-核腺癌细胞,将进一步研究与临床注释不同的变异评分。
和自动补丁夹具系统。通过假设驱动的分析和机器的结合
学习模型,我们将揭示变异效应,蛋白质结构,蛋白质功能和人类之间的关系
表型。为了优化地图集的使用,我们将提供一个门户,作为以各种为中心的决策支持
评估致病性功能证据的系统。我们将发布变体效果图数据预先
通过MavedB(我们共同开发)出版,并共享所有可再生变体测定试剂。
错义变体效应的心脏瓦尔图集,涵盖关键心血管疾病基因,将是一个
对于心血管疾病的临床和机理研究,必需的和可解释的社区资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Euan A Ashley其他文献
Prediction of diagnosis and diastolic filling pressure by AI-enhanced cardiac MRI: a modelling study of hospital data.
通过人工智能增强心脏 MRI 预测诊断和舒张充盈压:医院数据的建模研究。
- DOI:
10.1016/s2589-7500(24)00063-3 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
D. Lehmann;Bruna Gomes;Niklas Vetter;Olivia Braun;Ali Amr;Thomas Hilbel;Jens Müller;Ulrich Köthe;Christoph Reich;E. Kayvanpour;F. Sedaghat;Manuela Meder;J. Haas;Euan A Ashley;Wolfgang Rottbauer;D. Felbel;Raffi Bekeredjian;H. Mahrholdt;Andreas Keller;P. Ong;Andreas Seitz;H. Hund;N. Geis;F. André;Sandy Engelhardt;Hugo A Katus;Norbert Frey;Vincent Heuveline;Benjamin Meder - 通讯作者:
Benjamin Meder
Artificial Intelligence in Molecular Medicine. Reply.
分子医学中的人工智能。
- DOI:
10.1056/nejmc2308776 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bruna Gomes;Euan A Ashley - 通讯作者:
Euan A Ashley
Euan A Ashley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Euan A Ashley', 18)}}的其他基金
Diagnosing the Unknown for Care and Advancing Science (DUCAS)
诊断未知的护理和推进科学 (DUCAS)
- 批准号:
10682163 - 财政年份:2023
- 资助金额:
$ 208.6万 - 项目类别:
Diagnosing the Unknown for Care and Advancing Science (DUCAS)
诊断未知的护理和推进科学 (DUCAS)
- 批准号:
10872436 - 财政年份:2023
- 资助金额:
$ 208.6万 - 项目类别:
Center for Undiagnosed Diseases at Stanford Administrative Supplement
斯坦福大学未确诊疾病中心行政增刊
- 批准号:
10677455 - 财政年份:2022
- 资助金额:
$ 208.6万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
10083762 - 财政年份:2020
- 资助金额:
$ 208.6万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
10576926 - 财政年份:2020
- 资助金额:
$ 208.6万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
9884435 - 财政年份:2020
- 资助金额:
$ 208.6万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
10364603 - 财政年份:2020
- 资助金额:
$ 208.6万 - 项目类别:
What comes next? Engaging stakeholders in governance of participant data and relationships during the sunset of large genomic medicine research initiatives
接下来是什么?
- 批准号:
10162151 - 财政年份:2018
- 资助金额:
$ 208.6万 - 项目类别:
相似国自然基金
TMEM30a在致心律不齐性右心室心肌病中的作用及机制研究
- 批准号:82100367
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:青年科学基金项目
人参抗心律不齐活性成分及其构效关系的研究*3
- 批准号:28970070
- 批准年份:1989
- 资助金额:2.5 万元
- 项目类别:面上项目
相似海外基金
VENOUS ETHANOL ABLATION IN ISCHEMIC VENTRICULAR TACHYCARDIA- VELVET TRIAL
静脉乙醇消融治疗缺血性室性心动过速 - VELVET 试验
- 批准号:
10663024 - 财政年份:2023
- 资助金额:
$ 208.6万 - 项目类别:
Applying Innovative Artificial Intelligence Approaches to a Large Sleep Physiologic Biorepository to Integrate Sleep Disruption in Cardiovascular Risk Calculation
将创新的人工智能方法应用于大型睡眠生理生物库,将睡眠中断纳入心血管风险计算
- 批准号:
10731500 - 财政年份:2023
- 资助金额:
$ 208.6万 - 项目类别:
Role of cGAS-STING in Afterload-Induced Cardiac Remodeling
cGAS-STING 在后负荷诱导的心脏重塑中的作用
- 批准号:
10625953 - 财政年份:2023
- 资助金额:
$ 208.6万 - 项目类别:
Deep learning of awake and sleep electrocardiography to identify atrial fibrillation risk in sleep apnea
深度学习清醒和睡眠心电图来识别睡眠呼吸暂停中的房颤风险
- 批准号:
10579141 - 财政年份:2023
- 资助金额:
$ 208.6万 - 项目类别:
Genes and Nutrition: Dietary Choline, the Gut Microbiota, and Atrial Fibrillation
基因与营养:膳食胆碱、肠道微生物群和心房颤动
- 批准号:
10646383 - 财政年份:2022
- 资助金额:
$ 208.6万 - 项目类别: