What comes next? Engaging stakeholders in governance of participant data and relationships during the sunset of large genomic medicine research initiatives
接下来是什么?
基本信息
- 批准号:10162151
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimal ModelAreaAwardB-LymphocytesBiological AssayCaringCell LineCell modelCellsChild HealthCollaborationsCommittee MembershipComputational algorithmComputerized Medical RecordConsentCountryDataData AnalysesDetectionDevelopmentDiagnosisDiagnosticDiseaseEducationEligibility DeterminationEnsureEvaluationFDA approvedFamilyFibroblastsGene SilencingGenerationsGenetic CounselingGenomic medicineGenomicsGoalsGraphHealthcareHospitalsHumanInternationalInvestigationInvestmentsLeadershipLibrariesLiteratureMachine LearningMedicalMedicineMetagenomicsMethodsMissionModelingMultiomic DataNetwork-basedOntologyOrganismOrganoidsParticipantPatient CarePatientsPharmaceutical PreparationsPhasePhenotypePhysiciansPlayPolicy MakerPrincipal InvestigatorProceduresProcessProtocols documentationPublicationsReagentRecording of previous eventsResearchResourcesRoboticsRoleScientistSiteStandardizationStructureSystemT-LymphocyteTechnologyTestingTherapeuticTimeTissuesTrainingTranslational ResearchUnderserved PopulationUnited States National Institutes of HealthUniversitiesVariantVisitaccurate diagnosisbaseclinical practiceclinical research sitecohortdata integrationdeep learningdrug discoveryexperiencefollow-upgenome-widegenomic datahigh-throughput drug screeningimprovedinduced pluripotent stem cellinnovationinsertion/deletion mutationmeetingsmetabolomicsmultiple omicsnext generationnovelnovel strategiesnovel therapeuticsoperationoutreachpatient outreachphenotypic datapreservationprogramsreference genomerelating to nervous systemresearch clinical testingsample collectionscreeningsmall molecule librariessocioeconomicsstem cell biologysuccesssupport networktechnology developmenttooltranscriptome sequencingvariant detectionvirtual screening
项目摘要
Abstract
The Undiagnosed Diseases Network (UDN) has increased access for patients with undiagnosed diseases to
the nation’s leading clinicians and scientists. Phase II of the Network will facilitate the transition of UDN efforts
toward sustainability, through the expansion of clinical sites, refinement of methods, and integration with
regular clinical practice. Here, we propose a program of study that will (1) facilitate timely, accurate diagnosis
of patients with undiagnosed diseases; (2) improve diagnostic rates through novel approaches to data analysis
and integration; and (3) explore underlying mechanisms of disease to accelerate therapeutic drug discovery. In
Aim 1, we propose to evaluate patients referred to the UDN through a protocol that includes pre-visit chart
review and genetic counseling followed by an individualized visit during which standardized phenotypic and
environmental data are collected. Biosamples facilitate genomic, multi-omic, and cellular evaluation of disease.
Expansion of fibroblasts and, in selected cases, generation of induced Pluripotent Stem Cell (iPSC) lines
facilitates scientific investigation of the underlying diseases. We will expand our program of patient outreach,
particularly to under-served populations. We will extend our UDN-based genomic medicine educational
program both in scope and by broadening its eligibility. In Aim 2, we propose to develop and implement novel
methods in areas of high potential to increase diagnostic yield. This includes algorithms for the detection of
small genomic insertions and deletions as well as large scale structural variation. We will develop alignment
algorithms using graph reference genomes and promote the use of long-read sequencing technologies. We will
apply machine learning to the systematic integration of RNA sequencing, metabolomic, and phenotypic data
with the electronic medical record and the entire medical literature to improve diagnostic yield. In Aim 3, we
propose to facilitate diagnosis through enhanced cellular and model organisms phenotyping. We will
implement immunomic and metagenomic approaches such as T cell, B cell and unknown organism
sequencing for undiagnosed cases. We will utilize methods for moderate- and high-throughput phenotyping of
iPS-derived cells and promote novel drug discovery via high throughput drug screening both with FDA-
approved drugs and large scale small molecule libraries. Beyond Phase II, Stanford Medicine has made a
strong commitment to the continuation of the Center for Undiagnosed Diseases at Stanford through a multi-
million dollar institutional commitment. In summary, we aim to build on the success of Phase I of the UDN by
streamlining processes, maximizing collaboration and outreach, optimizing computational algorithms,
extending scientific investigation towards therapeutic discovery, and promoting engagement of hospital
leaders, clinicians, scientists, policy-makers, and philanthropists to ensure this national resource is sustained
long beyond the duration of this award.
抽象的
未确诊疾病网络 (UDN) 为患有未确诊疾病的患者提供了更多机会
该网络的第二阶段将促进 UDN 工作的过渡。
通过扩大临床地点、改进方法以及与
在此,我们提出了一项研究计划,该计划将 (1) 促进及时、准确的诊断。
患有未确诊疾病的患者;(2)通过新的数据分析方法提高诊断率
和整合;(3) 探索疾病的潜在机制,以加速治疗药物的发现。
目标 1,我们建议通过包含预访图表的方案来评估转介至 UDN 的患者
审查和遗传咨询,然后进行个性化访问,在此期间标准化表型和
收集环境数据有助于对疾病进行基因组、多组学和细胞评估。
成纤维细胞的扩增,以及在特定情况下生成诱导多能干细胞 (iPSC) 系
促进对潜在疾病的科学调查。我们将扩大患者外展计划,
特别是针对服务不足的人群,我们将扩展基于 UDN 的基因组医学教育。
在目标 2 中,我们建议制定和实施新颖的计划。
提高诊断率的高潜力领域的方法,其中包括检测算法。
我们将开发小基因组插入和缺失以及大规模结构变异。
我们将使用图参考基因组的算法并推广长读长测序技术的使用。
将机器学习应用于 RNA 测序、代谢组学和表型数据的系统集成
在目标 3 中,我们利用电子病历和整个医学文献来提高诊断率。
我们将建议通过增强细胞和模型生物表型来促进诊断。
实施免疫组学和宏基因组学方法,例如 T 细胞、B 细胞和未知生物体
我们将利用中通量和高通量表型分析方法对未确诊病例进行测序。
iPS 衍生细胞并通过 FDA 的高通量药物筛选促进新药发现
除了第二阶段之外,斯坦福大学医学中心还建立了一个经过批准的大型小型药物库。
坚定致力于通过多方面的努力继续维持斯坦福大学未确诊疾病中心的地位
总之,我们的目标是通过以下方式在 UDN 第一阶段的成功基础上再接再厉。
简化流程,最大限度地协作和推广,优化计算算法,
将科学研究扩展到治疗发现,并促进医院的参与
领导人、群众、科学家、政策制定者和慈善家,以确保这一国家资源的可持续发展
远远超出了该奖项的有效期。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Euan A Ashley其他文献
Prediction of diagnosis and diastolic filling pressure by AI-enhanced cardiac MRI: a modelling study of hospital data.
通过人工智能增强心脏 MRI 预测诊断和舒张充盈压:医院数据的建模研究。
- DOI:
10.1016/s2589-7500(24)00063-3 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
D. Lehmann;Bruna Gomes;Niklas Vetter;Olivia Braun;Ali Amr;Thomas Hilbel;Jens Müller;Ulrich Köthe;Christoph Reich;E. Kayvanpour;F. Sedaghat;Manuela Meder;J. Haas;Euan A Ashley;Wolfgang Rottbauer;D. Felbel;Raffi Bekeredjian;H. Mahrholdt;Andreas Keller;P. Ong;Andreas Seitz;H. Hund;N. Geis;F. André;Sandy Engelhardt;Hugo A Katus;Norbert Frey;Vincent Heuveline;Benjamin Meder - 通讯作者:
Benjamin Meder
Artificial Intelligence in Molecular Medicine. Reply.
分子医学中的人工智能。
- DOI:
10.1056/nejmc2308776 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bruna Gomes;Euan A Ashley - 通讯作者:
Euan A Ashley
Euan A Ashley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Euan A Ashley', 18)}}的其他基金
Diagnosing the Unknown for Care and Advancing Science (DUCAS)
诊断未知的护理和推进科学 (DUCAS)
- 批准号:
10682163 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Diagnosing the Unknown for Care and Advancing Science (DUCAS)
诊断未知的护理和推进科学 (DUCAS)
- 批准号:
10872436 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Systematically mapping variant effects for cardiovascular genes
系统地绘制心血管基因的变异效应
- 批准号:
10501975 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Center for Undiagnosed Diseases at Stanford Administrative Supplement
斯坦福大学未确诊疾病中心行政增刊
- 批准号:
10677455 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
10083762 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
10576926 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
9884435 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
10364603 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Transcranial Ultrasound Algorithms and Device for Rapid Stroke Determination by Paramedics
用于医护人员快速确定中风的经颅超声算法和设备
- 批准号:
10730722 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Delineation of auditory-motor population dynamics underlying sensorimotor integration in the birdsong system
鸟鸣系统中感觉运动整合的听觉运动群体动态的描绘
- 批准号:
10824950 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别: