Development of computational tools for accounting for host variability in predicting T-cell epitopes
开发计算工具来解释预测 T 细胞表位时的宿主变异性
基本信息
- 批准号:10502033
- 负责人:
- 金额:$ 37.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAffectAnimal ModelAntigensAreaBase SequenceBindingCancer VaccinesCommunicable DiseasesComputing MethodologiesCoupledDataData SetDevelopmentEpitopesGenerationsGeneticHealthHumanHypersensitivityImmuneImmune responseImmune systemImmunologyIndividualLifeLogicMachine LearningMalignant NeoplasmsMeasuresModelingMolecular MachinesMutationOutcomePeptidesPersonsPredictive ValuePrevalenceProcessProteinsReceptor CellResearchSafetySamplingSocietiesStatistical Data InterpretationStatistical ModelsT-Cell ReceptorT-Lymphocyte EpitopesTechnologyTrainingUncertaintyVaccine DesignVaccine ProductionVirusWorkantigen processingcombatcomputerized toolsemerging pathogengenetic informationimprovedinterestmachine learning modelmolecular modelingoutcome predictionpathogenpeptide based vaccinepersonalized medicine
项目摘要
PROJECT SUMMARY
The processing of antigens through proteolytic degradation and the recognition of epitopes is central to the
body’s ability to combat pathogens, like viruses, through discriminating self from non-self. As a result, there
has been substantial research effort aimed at determining the outcomes of these processes for novel
pathogens to enable epitope-driven vaccine design. There has also been great interest at the intersection of
immunology and personalized medicine in identifying subject (host) specific epitopes, as these have great
promise in the treatment of allergies and cancer where the distinction between self vs. non-self becomes
blurred. Computational methods have emerged as promising approaches for identifying (predicting) epitopes
that elicit a robust immune response given genetic information for an antigen. This is a very challenging task,
which is compounded further due to the existence of uncertainty caused by genetic variability between
pathogen strains, as well as, from individual to individual. Following this logic, it is also clear that using animal
models in evaluating the immune response elicited by epitopes can often have limited predictive value, since
sequence differences between a model species and humans can result in significantly different outcomes in
terms of the peptides formed during antigen processing and epitopes recognized by immune cell receptors.
Accordingly, there is an unmet need for computational tools that can predict the outcomes of antigen
processing and epitope recognition in a host-dependent fashion, where the models take as input both antigen
and host-specific genetic data. We propose the development of computational tools in three related areas to
meet these needs: i) Prediction of peptides formed through antigen processing; ii) Prediction of epitope
recognition by MHC molecules and T-cell receptors; and iii) Probabilistic analysis of epitopes most likely to
elicit an immune response. In the proposed work, molecular modeling and machine learning will be used to
develop accurate models of antigen processing and epitope binding to MHC molecules and T-cell receptors.
Molecular models will first allow us to identify key interactions between the antigen and immune system
proteins, which when coupled with statistical data can allow us to understand how mutations would affect those
interactions. The statistical analysis of the effects of mutations will be applied to large publicly available
datasets to sufficiently capture the effects of mutations on antigen processing and epitope recognition and will
ultimately be incorporated into machine learning models. The proposed probabilistic models will apply a
scenario-driven approach for capturing uncertainty in epitope generation and recognition. We will sample
potential antigen and human sequences based on known distributions of mutation prevalence to measure the
likelihood that an identified epitope will be generated and elicit a robust immune response. The proposed
computational tools, if successful, could have substantial impact on the areas of epitope-driven vaccine design,
including personalized cancer vaccines, and the identification of allergy related epitopes.
项目摘要
通过蛋白质降解和表位的识别是对抗原的加工是至关重要的
身体通过将自我与非自我歧视的能力,例如病毒。
旨在确定新型过程的结果,已经进行了实质性的研究工作
病原体使表位驱动的疫苗设计也很感兴趣
免疫学和个性化医学在识别特定主题(宿主)特定表位时,它们具有很好的表现
在治疗自我VS之间的区别的过敏和癌症方面有望
计算机。
给定给定给定抗原的遗传学含量信息的强大的IMUNE反应。
由于存在由遗传变异引起的不确定性,因此进一步综合
病原体菌株以及从个人到个体的逻辑。
评估表位引起的免疫反应的模型通常可以具有预测价值,因为
模型物种与人之间的序列差异可能会导致明显不同的结果
在抗原加工过程中形成的肽和免疫细胞受体识别的表位。
因此,对计算工具工具工具工具工具的未满足的需求是抗原的结果
以宿主依赖方式处理和表位识别是模型作为输入的抗原
和宿主特定的遗传数据。
满足这些需求:i)通过抗原加工形成的肽的预测;
MHC分子和T细胞受体的识别;
在支撑工作,分子建模和机器学习中引起免疫反应
开发了与MHC分子和T细胞受体结合的抗原加工和表位结合的准确模型。
分子模型将首先允许我们确定抗原和免疫系统之间的关键相互作用
蛋白质,当与统计数据结合时,我可以理解突变将如何影响那些污垢
相互作用。
数据集可高效地捕获突变对抗原处理和表位识别的影响,并将威尔·威尔
最终将其纳入机器学习模型。
场景驱动的方法用于捕获的捕获不确定性,我们将采样
基于已知突变分布的潜在抗原和人类序列,以测量您
具有生成的表位并引起了稳健的免疫反应
计算工具,如果成功的话,可能会对表位驱动的疫苗设计区域产生重大影响,
包括个性化的癌症疫苗,以及与过敏相关表位的鉴定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chris A. Kieslich其他文献
Chris A. Kieslich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CSRD Research Career Scientist Award Application
CSRD研究职业科学家奖申请
- 批准号:
10701136 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
"Novel Mouse Models for Quantitative Understanding of Baseline and Therapy-Driven Evolution of Prostate Cancer Metastasis"
“用于定量了解前列腺癌转移的基线和治疗驱动演变的新型小鼠模型”
- 批准号:
10660349 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
Identification of osteoclast endocrine and paracrine communications by systems genetics approaches
通过系统遗传学方法鉴定破骨细胞内分泌和旁分泌通讯
- 批准号:
10716388 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
Role of the Infrapatellar Fat Pad in the Development of Post-Traumatic Osteoarthritis Following Blunt Impact to the Knee Joint
髌下脂肪垫在膝关节钝性撞击后发生创伤后骨关节炎中的作用
- 批准号:
10654180 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
Metabolism of cancer chemotherapeutics by the human gut microbiome
人类肠道微生物组对癌症化疗药物的代谢
- 批准号:
10635361 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别: