Efficient synthon-based modular screening of Giga-to-Terra-scale virtual libraries
基于合成子的高效模块化筛选千兆级到太级虚拟文库
基本信息
- 批准号:10504984
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-26 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAffinityAlgorithmsBenchmarkingBindingCNR1 geneCNR2 geneChemicalsCloud ComputingCodeCollaborationsCommunitiesComputer AnalysisCyclic AMP-Dependent Protein KinasesDevelopmentDockingDrug Discovery GroupsEnsureG-Protein-Coupled ReceptorsGeometryGoalsGrowthInstitutionLeadLettersLibrariesLigandsLinuxLipid BindingMachine LearningNatureNucleotidesOrphanPharmaceutical PreparationsPhosphotransferasesPositioning AttributePropertyProteinsPythonsROCK1 geneReactionResearchResolutionSeedsStructureTechnologyTestingTimeValidationWorkanalogbasecannabinoid receptorcannabinoid receptor antagonistchemical synthesisclinically relevantcluster computingcombinatorialcomputational platformcomputing resourcescostcost effectivedrug candidatedrug discoverydrug qualityimprovedin siliconew technologynovelnovel strategiesopen sourceportabilityprospectiverapid detectionrapid growthreceptorscaffoldscale upscreeningtherapeutic targetvirtualvirtual libraryvirtual screening
项目摘要
ABSTRACT
The goal of our proposal is to develop a scalable platform for structure-based virtual screening of Giga- and Tera-
scale drug-like compound libraries, enabling streamlined discovery of high-quality drug candidates. Availability
of protein target structures and Giga-scale REAL Space libraries of virtual compounds (>10 billion) position
docking-based virtual screening as a key paradigm for drug discovery. However, the computational cost of Giga-
scale screening becomes a major bottleneck limiting further growth of the screening libraries. Recently, we have
introduced a highly scalable synthon-based technology, V-SYNTHES, which performs hierarchical structure-
based screening of REadily AvaiLable for synthesis (REAL) libraries (Sadybekov et al, Nature accepted).
By iteratively screening synthon-scaffold combinations, the V-SYNTHES approach makes possible rapid
detection of the best-scoring compounds in the Giga-scale chemical space while performing docking of only a
small fraction (~2 million) of the library. First tests of V-SYNTHES demonstrated strong enrichment in
computational benchmarks and significantly improved experimental hit rates on cannabinoid receptor CB2 and
ROCK1 kinase targets, while requiring 100 times less computational resources than standard virtual screenings.
Building upon these preliminary results, our proposal aims to: (1) Further develop a fully automated V-
SYNTHES algorithm, optimize its parameters and expand it to Tera-scale REAL libraries. (2) Apply and
experimentally validate the V-SYNTHES approach on a set of therapeutic targets of different classes, which
includes such challenging targets as nucleotide and lipid binding pockets, allosteric pockets, and orphan
receptors (3) Establish portability of the algorithm to an open-source docking platform to further facilitate V-
SYNTHES adoption in academic labs. The open-source algorithm will be distributed as a workflow for Linux
clusters and computing clouds. Successful completion of this project will establish V-SYNTHES as a robust
computational platform for structure-based ligand discovery in most classes of therapeutic targets, scaleable for
rapidly growing REAL modular libraries. Most importantly, it will help to make fast virtual screening of the
Giga-to-Tera-scale libraries broadly accessible for the whole research community with reasonable computational
resources.
抽象的
我们提案的目标是开发一个可扩展的平台,用于基于结构的千兆和兆兆级虚拟筛选
扩展类药化合物库,从而简化高质量候选药物的发现。可用性
蛋白质目标结构和虚拟化合物(>100亿)位置的千兆级真实空间库
基于对接的虚拟筛选作为药物发现的关键范例。然而,千兆级的计算成本
规模筛选成为限制筛选文库进一步增长的主要瓶颈。最近,我们有
推出了一种高度可扩展的基于合成子的技术,V-SYNTHES,它执行分层结构-
基于 REadily AvaiLable 用于合成 (REAL) 文库的筛选(Sadybekov 等人,Nature 接受)。
通过迭代筛选合成子-支架组合,V-SYNTHES 方法使快速合成成为可能
检测千兆级化学空间中得分最高的化合物,同时仅对
图书馆的一小部分(约 200 万)。 V-SYNTHES 的首次测试表明,在
计算基准并显着提高大麻素受体 CB2 和的实验命中率
ROCK1 激酶目标,同时所需的计算资源比标准虚拟筛选少 100 倍。
基于这些初步结果,我们的建议旨在: (1) 进一步开发全自动 V-
SYNTHES算法,优化其参数并将其扩展为Tera规模的REAL库。 (2) 申请并
对一组不同类别的治疗靶点进行实验验证 V-SYNTHES 方法,
包括诸如核苷酸和脂质结合口袋、变构口袋和孤儿等具有挑战性的目标
(3)建立算法到开源对接平台的可移植性,进一步方便V-
SYNTHES 在学术实验室中的采用。开源算法将作为 Linux 的工作流程进行分发
集群和计算云。该项目的成功完成将使 V-SYNTHES 成为一个强大的
用于大多数类别治疗靶标中基于结构的配体发现的计算平台,可扩展
快速增长的 REAL 模块化库。最重要的是,它将有助于快速虚拟筛选
整个研究界可以通过合理的计算广泛访问千兆至万亿级的库
资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VSEVOLOD KATRITCH其他文献
VSEVOLOD KATRITCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VSEVOLOD KATRITCH', 18)}}的其他基金
Efficient synthon-based modular screening of Giga-to-Terra-scale virtual libraries
基于合成子的高效模块化筛选千兆级到太级虚拟文库
- 批准号:
10710170 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Structure Function of CB1 Cannabinoid Receptor
CB1大麻素受体的结构功能
- 批准号:
10001488 - 财政年份:2016
- 资助金额:
$ 41.25万 - 项目类别:
Rational discovery of new DOR chemotypes to prevent addiction and overdose
合理发现新的 DOR 化学型以防止成瘾和过量
- 批准号:
9033099 - 财政年份:2015
- 资助金额:
$ 41.25万 - 项目类别:
Rational Anthrax Vaccine with Structural Epitopes on VLP
VLP 上具有结构表位的合理炭疽疫苗
- 批准号:
6555409 - 财政年份:2002
- 资助金额:
$ 41.25万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Efficient synthon-based modular screening of Giga-to-Terra-scale virtual libraries
基于合成子的高效模块化筛选千兆级到太级虚拟文库
- 批准号:
10710170 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Feeding Machine Learning Algorithms with Mechanistic Data to Predict Outcomes of Copper-Catalyzed Couplings
将机械数据输入机器学习算法来预测铜催化耦合的结果
- 批准号:
10314079 - 财政年份:2021
- 资助金额:
$ 41.25万 - 项目类别:
Integrated tools for higher order structure determination by cross-link analysis
通过交联分析确定高阶结构的集成工具
- 批准号:
9347159 - 财政年份:2017
- 资助金额:
$ 41.25万 - 项目类别: