Feeding Machine Learning Algorithms with Mechanistic Data to Predict Outcomes of Copper-Catalyzed Couplings
将机械数据输入机器学习算法来预测铜催化耦合的结果
基本信息
- 批准号:10314079
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-09-19
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffinityAirAreaBindingBromidesCatalysisChloridesCommunitiesComplexCopperCouplingDataData SetDevelopmentDisadvantagedEquationFosteringFoundationsGenerationsHandHigh temperature of physical objectInformaticsInvestigationIodidesLigandsMachine LearningMediatingMethodsModelingNitrogenOrganic ChemistryOxygenPalladiumPhosphinesPricePublicationsReactionResearchRestSaltsSeriesStructureSystemTemperatureTestingTimeTrainingTransition ElementsValidationWorkaryl halidecatalystchemical reactioncostdesignfeedingimprovedin silicoinsightlarge datasetsmachine learning algorithmoutcome predictionpredictive modelingreaction ratetool
项目摘要
PROJECT SUMMARY
Cross-coupling reactions that combine aryl halides with oxygen and nitrogen nucleophiles to form C-N and C-O
bonds are vital tools for the synthesis of medicinally-relevant molecules. These reactions are often catalyzed by
complexes of transition metals, such as palladium or copper. Copper-catalyzed cross-coupling reactions have
several advantages over their palladium-mediated counterparts, but the disadvantages associated with copper
catalysis often outweigh these benefits. Most Cu-catalyzed cross-coupling methods require high loadings of
catalyst and high temperatures, and copper catalysts are often unable to effect cross-coupling of aryl chlorides.
To address these issues, ligands that increase activity of copper catalysts for C-N and C-O cross-couplings have
been sought, and oxalamide ligands have been shown to generate some of the most active catalysts. A series
of publications by Ma have shown that such catalysts can, in some cases, react with 10,000 turnovers, and can
cross-couple aryl chlorides, albeit at high temperature (120 °C) and loading of catalyst (5-10 mol %). However,
identifying reaction conditions to promote cross-coupling of a given pair of substrates can be difficult – 12 different
oxalamide ligands have been used to achieve couplings of different combinations of substrates in high yield.
Herein, we propose to use mechanistic research, together with machine learning (ML), to facilitate the
identification of reaction conditions for C-O cross-coupling reactions mediated by Cu salts with oxalamide ligands
and to facilitate the development of improved ligands and methods. We hypothesize that mechanistic
understanding can be used to build improved ML models that can use data sets on the order of 100-1000 points
to predict reaction yield effectively. Once built, an ML model capable of predicting yield can be used to evaluate
in-silico the potential of a ligand to generate a catalyst for the cross-coupling of aryl chlorides, or to predict
reaction conditions to achieve high yield for a new combination of coupling partners.
Our research strategy is as follows. First, we will elucidate the mechanism of C-O cross-coupling reactions
catalyzed by copper salts with oxalamide ligands, and determine how ligand structure influences the reaction
mechanism. The mechanistic insights gained will be used to identify or develop input for a machine learning
model (features). We will use high-throughput experimentation tools to carry out 960 C-O coupling reactions with
a variety of aryl halides, nucleophiles, and oxalamide ligands. The data set will be used to compare our hand-
selected features with features selected by a ML algorithm by their ability to predict C-O coupling yield. The
comparison will be made across three different ML optimization tasks. Our mechanistic studies will establish for
the first time the mechanism of a C-O cross-coupling reaction catalyzed by Cu salts with oxalamide ligands,
laying the foundation for the investigation of other C-O and C-N cross-coupling reactions using the same catalyst
system. Our ML studies will establish methods that enable reasonably small datasets to predict reaction yield.
项目概要
芳基卤化物与氧和氮亲核试剂结合形成 C-N 和 C-O 的交叉偶联反应
键是合成医学相关分子的重要工具,这些反应通常被催化。
过渡金属的络合物,例如钯或铜催化的交叉偶联反应。
与以钯为中介的信用相比有几个优点,但与铜相关的缺点
大多数铜催化的交叉偶联方法需要高负载量。
催化剂和高温,铜催化剂通常不能实现芳基氯的交叉偶联。
为了解决这些问题,增加铜催化剂 C-N 和 C-O 交叉偶联活性的配体已被开发出来。
草酰胺配体已被证明可以产生一些最活跃的 A 系列催化剂。
马云的出版物表明,在某些情况下,此类催化剂可以与 10,000 次翻转发生反应,并且可以
尽管在高温(120°C)和催化剂负载(5-10 mol%)下,芳基氯会发生交叉偶联。
确定促进给定底物对交叉偶联的反应条件可能很困难 – 12 种不同的反应条件
草酰胺配体已被用来以高产率实现不同底物组合的偶联。
在此,我们建议使用机械研究和机器学习(ML)来促进
铜盐与草酰胺配体介导的 C-O 交叉偶联反应的反应条件的鉴定
并促进改进配体和方法的开发。
理解可用于构建改进的 ML 模型,该模型可以使用 100-1000 点数量级的数据集
有效预测反应产率一旦建立,就可以使用能够预测产率的机器学习模型来评估。
计算机模拟配体产生芳基氯交叉偶联催化剂的潜力,或预测
反应条件以实现新的偶联伙伴组合的高产率。
我们的研究策略如下:首先,我们将阐明C-O交叉偶联反应的机理。
由铜盐与草酰胺配体催化,并确定配体结构如何影响反应
获得的机制见解将用于识别或开发机器学习的输入。
我们将使用高通量实验工具进行 960 C-O 偶联反应。
各种芳基卤化物、亲核试剂和草酰胺配体的数据集将用于比较我们的手工数据。
机器学习算法通过预测 C-O 耦合率的能力来选择特征。
我们将针对三种不同的机器学习优化任务进行比较。
首次揭示了铜盐与草酰胺配体催化的C-O交叉偶联反应的机理,
为使用同一催化剂研究其他C-O和C-N交叉偶联反应奠定基础
我们的机器学习研究将建立能够使用相当小的数据集来预测反应产量的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Connor Delaney其他文献
Connor Delaney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Allogeneic BAFF Ligand Based CAR T Cells as a Novel Therapy for B Cell Malignancies
基于同种异体 BAFF 配体的 CAR T 细胞作为 B 细胞恶性肿瘤的新疗法
- 批准号:
10698759 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Small Molecule Probes for Fluorescence-guided Head and Neck Cancer Surgery
用于荧光引导头颈癌手术的小分子探针
- 批准号:
10644519 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Deciphering the genetic basis of differential antibiotic efficacy in Enterococcus faecalis endocarditis
破译抗生素对粪肠球菌心内膜炎疗效差异的遗传基础
- 批准号:
10597129 - 财政年份:2022
- 资助金额:
$ 6.6万 - 项目类别: