Molecular Mechanisms Regulating Ammonia Metabolism
调节氨代谢的分子机制
基本信息
- 批准号:10491245
- 负责人:
- 金额:$ 33.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcidsAcuteAddressAlkalosisAmmoniaAnionsApicalAtrophicBicarbonatesCXCL12 geneCardiovascular systemCell membraneCell physiologyCharacteristicsChronic Kidney FailureClinical MedicineCoupledDNA Sequence AlterationDiseaseDisease ProgressionDuct (organ) structureElectron MicroscopyEnzymesEventExcretory functionGDF15 geneGPR4 geneGene CombinationsGene DeletionGenerationsGenesGlycoproteinsHealthHomeostasisHypokalemiaImpairmentIn VitroIntercalated CellIntercalated DuctIntervention TrialKidneyKnockout MiceLeadLimb structureMaintenanceMediatingMetabolic acidosisMetabolismModelingMolecularMusPathway interactionsPatternPersonsPhenotypePhysical FunctionPlayPotassiumProceduresProcessProteinsProton-Translocating ATPasesProtonsPublishingRNA SplicingRegulationRenal Replacement TherapyRoleSeriesSerumSignal PathwaySignal TransductionSiteTechniquesThickThyroid Function TestsUrineVariantVesicleWorkbasebone metabolismcollecting tubule structureextracellularglucose metabolismhensinhyperkalemiaimprovedinsulin sensitivitykidney interstitial tissuemortalitymuscle formmuscle strengthresponsetranscription activator-like effector nucleases
项目摘要
Project Summary/Abstract
The renal maintenance of acid-base homeostasis is critical for optimal health. Collecting duct intercalated
cells play a central role in this process through adaptive changes in proton secretion, bicarbonate secretion, and
Rh glycoproteins-mediated ammonia transport. Our current paradigm is that the primary determinant of this
response involves direct effects of extracellular pH on intercalated cells.
We suggest a new paradigm. Deletion of the proximal tubule-specific basolateral bicarbonate
transporter, NBCe1-A, causes severe metabolic acidosis, yet inhibits intercalated cell phenotypic characteristics
of acid secretion and inhibits the intercalated cell plasticity response to acid-loading. This is not an off-target
effect of the TALEN gene-editing procedure; identical effects were seen with NBCe1-A/B deletion generated
using Cre-lox techniques. Published work shows that the K+ disorders, hypokalemia and hyperkalemia, alter
intercalated cell phenotype and plasticity in a pattern which cannot be explained by extracellular pH. The effects
of NBCe1-A or NBCe1-A/B deletion, or of K+ disorders likely involve ammonia. Each alters proximal tubule-
derived ammonia generation in a pattern which parallels the observed intercalated cell responses. Isolated
perfused collecting duct studies show ammonia acutely and directly regulates intercalated cell H⁺ and
bicarbonate transport. Thus, we propose a new paradigm, that proximal tubule-derived ammonia, which is
concentrated in the renal interstitium by the TAL, is a primary determinant of intercalated cell phenotypic
characteristics and plasticity response. Our proposed studies investigate this new paradigm in detail.
Specific Aim 1 will determine the effect of gene deletion maneuvers which directly and specifically alter
proximal tubule and thick ascending limb ammonia metabolism on intercalated cell phenotype and plasticity. We
will use a combination of gene deletion approaches, including proximal tubule-specific deletion of PDG, the initial
and the rate-limiting enzyme in ammoniagenesis, and TAL NHE4 deletion, which directly impacts ammonia
concentration into the renal interstitium where we propose it regulates intercalated cells. We will study the effect
of these gene deletion so in a variety of conditions, including basal state, acid-loading, and abnormal potassium
homeostasis, both hypokalemia and hyperkalemia.
Specific Aim 2 will determine the signaling mechanisms through which proximal tubule regulates
intercalated cell phenotypic characteristics and plasticity. We will identify whether this is direct stimulator of
pathways or acts parallel to and independent of signaling pathways known to alter intercalated cells, including
GDF15, hensin, GPR4, and SDF1.
These studies will substantially advance our understanding of the molecular mechanisms regulating
thereby acid-base homeostasis.
项目摘要/摘要
酸碱稳态的肾脏维持对于最佳健康至关重要。收集管道插入
细胞在此过程中通过质子分泌,碳酸氢盐分泌和
RH糖蛋白介导的氨转运。我们目前的范式是这是主要的决定者
反应涉及细胞外pH对插入细胞的直接影响。
我们建议一个新的范式。删除近端管特异性基底外侧碳酸氢盐的删除
转运蛋白NBCE1-A会导致严重的代谢性酸中毒,但抑制了插层的细胞表型特征
酸的分泌并抑制对酸负荷的插入细胞可塑性反应。这不是一个脱离目标
塔伦基因编辑程序的影响;通过产生的NBCE1-A/B缺失可见相同的效果
使用Cre-Lox技术。已发表的工作表明,K+疾病,低钾血症和高钾血症已改变
插入的细胞表型和可塑性,该模式无法通过细胞外pH来解释。效果
NBCE1-A或NBCE1-A/B缺失或K+疾病的含量可能涉及氨。每个都改变了代理管 -
衍生的氨产生的模式与观察到的插入细胞反应相似。孤立
完善的收集管道研究表明,氨敏感,直接调节插入的细胞H⁺和
碳酸氢盐运输。那就是我们提出了一个新的范式,那是近端管衍生的氨
TAL中浓缩肾脏间质,是插入式细胞表型的主要决定剂
特性和可塑性响应。我们提出的研究详细研究了这一新范式。
具体目标1将确定基因删除操作的效果,该操作直接,专门改变
近端小管和较厚的肢体氨代谢在插入的细胞表型和可塑性上。我们
将使用基因缺失方法的组合,包括PDG的近端管特异性缺失
以及氨化中的限速酶和TAL NHE4缺失,直接影响氨
集中于肾脏间质,我们建议它调节插入的细胞。我们将研究效果
这些基因删除中的多种条件中的缺失,包括碱性状态,酸负荷和异常钾
稳态,低钾血症和高钾血症。
特定的目标2将确定近端细胞调节的信号传导机制
插入的细胞表型特征和可塑性。我们将确定这是否是直接的刺激器
途径或行为平行于并独立于已知会改变插入细胞的信号通路,包括
GDF15,Hensin,GPR4和SDF1。
这些研究将大大提高我们对调节分子机制的理解
因此酸碱稳态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
I. David Weiner其他文献
I. David Weiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('I. David Weiner', 18)}}的其他基金
Molecular Mechanisms Regulating Ammonia Metabolism
调节氨代谢的分子机制
- 批准号:
10366279 - 财政年份:2015
- 资助金额:
$ 33.55万 - 项目类别:
Expression of ammonia-sensitive proteins in the CNS
中枢神经系统中氨敏感蛋白的表达
- 批准号:
6823260 - 财政年份:2003
- 资助金额:
$ 33.55万 - 项目类别:
Expression of ammonia-sensitive proteins in the CNS
中枢神经系统中氨敏感蛋白的表达
- 批准号:
6720095 - 财政年份:2003
- 资助金额:
$ 33.55万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 33.55万 - 项目类别:
Cholesterol-lowering drugs for treatment of pancreatitis: validation of a clinically significant novel therapeutic target and approach
用于治疗胰腺炎的降胆固醇药物:验证具有临床意义的新型治疗靶点和方法
- 批准号:
10585773 - 财政年份:2023
- 资助金额:
$ 33.55万 - 项目类别:
The lipid hydrolase NAAA as a target for non-addictive analgesic medications
脂质水解酶 NAAA 作为非成瘾性镇痛药物的靶标
- 批准号:
10584428 - 财政年份:2023
- 资助金额:
$ 33.55万 - 项目类别:
Liver Targeting Dihydroquinolizinone (DHQ) Molecules as Hepatitis B Virus Antivirals with Reduced Toxicity
肝脏靶向二氢喹嗪酮 (DHQ) 分子作为乙型肝炎病毒抗病毒药物,毒性降低
- 批准号:
10593566 - 财政年份:2023
- 资助金额:
$ 33.55万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 33.55万 - 项目类别: