Control of primordial germ cell quiescence by niche basement membrane and Notch signaling
通过生态位基底膜和Notch信号控制原始生殖细胞静止
基本信息
- 批准号:10491811
- 负责人:
- 金额:$ 25.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBasement membraneBiologicalBiological ModelsBiologyCaenorhabditis elegansCell CommunicationCell CycleCell Differentiation processCell membraneCellsCellular biologyDevelopmentEmbryoEmbryonic DevelopmentEnsureEnvironmentEventFertilityFoundationsGLP-I receptorGeneticGenetic TranscriptionGenitalGenitaliaGerm CellsGoalsGonadal structureHumanImageIn VitroInfertilityInvertebratesKnowledgeLamininLearningLigandsLinkMammalsMembrane ProteinsModelingMolecularMutationNatureNotch Signaling PathwayPositioning AttributePrimordiumProliferatingRegulationResearchSignal PathwaySignal TransductionStructure of primordial sex cellSystemTeratomaTestingTouch sensationbaseblastomere structuredesigneggexperienceexperimental studygermline stem cellsglucagon-like peptide 1insightnotch proteinprecursor cellpreservationpreventprogramsreceptorrecruitsperm cellstem cells
项目摘要
SUMMARY
A detailed knowledge of each step of germ cell development is critical for understanding the developmental
basis of human infertility and for reaching the goal of differentiating gametes in vitro. Primordial germ cells
(PGCs) are the embryonic precursor cells that give rise to sperm and eggs, and are therefore essential for
fertility. During early embryogenesis, PGCs enter a temporary period of cell cycle and transcriptional
quiescence that is important for preserving their developmental potential. Subsequently, PGCs proliferate then
differentiate into germline stem cells in order to produce gametes. These regulatory events are guided by
poorly understood signals arising from somatic niches. For example, mammalian PGCs receive critical but
unidentified differentiation signals from the genital ridge. Our poor understanding of how niche signaling
regulates PGCs is due in part to the paucity of model systems in which niche-PGC interactions can been
investigated in molecular detail.
Our long-term goal is to use the experimental strengths of C. elegans to determine how somatic niche
cells in the embryo regulate PGC quiescence. Many fundamental and deeply conserved insights into germ cell
biology have come from studies in invertebrate models, including C. elegans. Embryos contain two PGCs,
which are enwrapped by two somatic gonad cells (SGPs) to form the primordial gonad. SGPs act as a niche to
ensure that PGCs remain quiescent until the embryo hatches. We have found that SGPs accomplish this in
two ways. First, they are required to template a basement membrane (BM) that surrounds the primordial
gonad. Second, they are needed to relay a signal originating from the gonadal BM that prevents embryonic
PGCs from exiting quiescence. While the identity of the signal is unknown, the loss of PGC quiescence that
occurs when BM is depleted is accompanied by activation of the Notch signaling pathway and is suppressed
by mutations in the GLP-1 Notch receptor. Our central hypothesis is that BM maintains PGC quiescence by
inhibiting a Notch ligand in SGPs, preventing it from activating the GLP-1 receptor in PGCs. The specific
objectives of this proposal are to identify the SGP Notch ligand and the BM proteins and receptors that
regulate PGC quiescence, and to determine how BM and Notch signaling components interface. These
foundational studies will enable us to develop the C. elegans gonad primordium into a powerful new model
system to investigate the molecular basis of niche signaling to PGCs. Our findings will reveal specific new
insights into how niche BM controls Notch signaling to preserve PGC quiescence, informing studies of
mammalian PGC regulation. They will also more broadly illuminate how niche BM can control Notch signaling -
a critical regulator of many stem cell systems.
概括
详细了解生殖细胞发育的每个步骤对于理解发育过程至关重要
人类不育的基础和达到体外分化配子的目标。原始生殖细胞
(PGC) 是产生精子和卵子的胚胎前体细胞,因此对于
生育能力。在早期胚胎发生期间,PGC 进入细胞周期和转录的临时时期
静止对于保持其发展潜力很重要。随后,PGC 开始增殖
分化为生殖干细胞以产生配子。这些监管事件的指导
体细胞生态位产生的信号知之甚少。例如,哺乳动物 PGC 受到关键但
来自生殖嵴的未识别分化信号。我们对利基信号如何传递知之甚少
调节 PGC 的部分原因是缺乏可以研究利基-PGC 相互作用的模型系统
对分子细节进行了研究。
我们的长期目标是利用秀丽隐杆线虫的实验优势来确定体细胞生态位如何
胚胎中的细胞调节 PGC 静止。关于生殖细胞的许多基本且深入保守的见解
生物学来自对无脊椎动物模型的研究,包括线虫。胚胎含有两个 PGC,
它们被两个体细胞性腺细胞(SGP)包裹,形成原始性腺。 SGP 作为一个利基市场
确保 PGC 保持静止状态直至胚胎孵化。我们发现 SGP 在以下方面实现了这一目标
两种方式。首先,他们需要模板化围绕原始细胞的基底膜(BM)
性腺。其次,它们需要传递来自性腺 BM 的信号,以阻止胚胎发育。
PGC 退出静止状态。虽然信号的身份未知,但 PGC 静止的丧失表明
当 BM 耗尽时发生,伴随着 Notch 信号通路的激活并被抑制
GLP-1 Notch 受体突变。我们的中心假设是 BM 通过以下方式维持 PGC 静止:
抑制 SGP 中的 Notch 配体,防止其激活 PGC 中的 GLP-1 受体。具体的
该提案的目的是鉴定 SGP Notch 配体以及 BM 蛋白和受体
调节 PGC 静止,并确定 BM 和 Notch 信号传导成分如何相互作用。这些
基础研究将使我们能够将线虫性腺原基发展成一个强大的新模型
系统研究 PGCs 生态位信号传导的分子基础。我们的研究结果将揭示具体的新
深入了解利基 BM 如何控制 Notch 信号以保持 PGC 静止,为以下研究提供信息
哺乳动物 PGC 调节。他们还将更广泛地阐明利基 BM 如何控制 Notch 信号传导 -
许多干细胞系统的关键调节剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Nance其他文献
Jeremy Nance的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Nance', 18)}}的其他基金
Control of primordial germ cell quiescence by niche basement membrane and Notch signaling
通过生态位基底膜和Notch信号控制原始生殖细胞静止
- 批准号:
10303387 - 财政年份:2021
- 资助金额:
$ 25.43万 - 项目类别:
The role of cell interactions in shaping development
细胞相互作用在塑造发育中的作用
- 批准号:
9912781 - 财政年份:2016
- 资助金额:
$ 25.43万 - 项目类别:
The role of cell interactions in shaping development
细胞相互作用在塑造发育中的作用
- 批准号:
10614459 - 财政年份:2016
- 资助金额:
$ 25.43万 - 项目类别:
The role of cell interactions in shaping development
细胞相互作用在塑造发育中的作用
- 批准号:
10798750 - 财政年份:2016
- 资助金额:
$ 25.43万 - 项目类别:
The role of cell interactions in shaping development
细胞相互作用在塑造发育中的作用
- 批准号:
9260908 - 财政年份:2016
- 资助金额:
$ 25.43万 - 项目类别:
The role of cell interactions in shaping development
细胞相互作用在塑造发育中的作用
- 批准号:
10398238 - 财政年份:2016
- 资助金额:
$ 25.43万 - 项目类别:
Mechanisms of Contact-Mediated Cell Polarization in the C. elegans Embryo.
线虫胚胎中接触介导的细胞极化机制。
- 批准号:
8669274 - 财政年份:2013
- 资助金额:
$ 25.43万 - 项目类别:
"Mechanism of extracellular vesicle budding in C. elegans embryos".
“线虫胚胎中细胞外囊泡出芽的机制”。
- 批准号:
8281096 - 财政年份:2012
- 资助金额:
$ 25.43万 - 项目类别:
相似国自然基金
靶向血管基底膜的智能纳米凝胶载药体系在血管再狭窄治疗中的应用
- 批准号:31600811
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
致病微生物与抗肾小球基底膜病发病机制研究
- 批准号:81330020
- 批准年份:2013
- 资助金额:290.0 万元
- 项目类别:重点项目
基于MEMS工艺构建生物人工肾小球的基础研究
- 批准号:81271731
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
人工镫骨对基底膜振动影响的微观生物力学研究
- 批准号:30770556
- 批准年份:2007
- 资助金额:36.0 万元
- 项目类别:面上项目
脑脉通对脑缺血老龄大鼠脑血管基底膜损伤保护作用的分子生物学机制
- 批准号:30371812
- 批准年份:2003
- 资助金额:19.0 万元
- 项目类别:面上项目
相似海外基金
Understanding Lrig1+ in vocal fold epithelium and organoid biology
了解声带上皮和类器官生物学中的 Lrig1
- 批准号:
10732733 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
The Role of EpCAM Glycosylation in Breast Cancer Metastasis
EpCAM 糖基化在乳腺癌转移中的作用
- 批准号:
10605857 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
High-throughput identification and transcriptional analysis of autoreactive T cells in individuals with membranous nephropathy.
膜性肾病患者自身反应性 T 细胞的高通量鉴定和转录分析。
- 批准号:
10725558 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
Developing non-immunosuppressive immune-based therapeutics for targeted treatment of autoimmune diseases
开发非免疫抑制性免疫疗法来靶向治疗自身免疫性疾病
- 批准号:
10586562 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别: