An assistive-technology based Caregiver Training Program (CTP) to enhance caregiver effectiveness, well-being, and quality of life, which will improve overall care for individuals living with AD/ADRD.
基于辅助技术的护理人员培训计划 (CTP),旨在提高护理人员的效率、福祉和生活质量,从而改善 AD/ADRD 患者的整体护理。
基本信息
- 批准号:10484412
- 负责人:
- 金额:$ 44.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAddressAlzheimer&aposs disease related dementiaBrainBrain regionBusinessesCalendarCaregiver BurdenCaregiver supportCaregiver well-beingCaregiversCaringCategoriesClient satisfactionCognitionCommunicationCommunitiesCritical ThinkingDataDementiaDevicesDropoutEducationEffectivenessEmergency SituationEmotionalFamilyFamily CaregiverFoundationsGuidelinesHabitsHealthHealth care facilityHealthcare SystemsHomeHospitalizationHospitalsImpaired cognitionIndividualInformation NetworksKnowledgeLearningLegal patentLibrariesLife ExperienceMapsMeasurableMeasuresMemoryMental HealthMobile Health ApplicationMotivationNeurosciencesOccupationsOutcomeParticipantPatient CarePatient Self-ReportPatient-Focused OutcomesPatientsPerformancePersonal SatisfactionPersonsPhaseProcessProgressive DiseaseProviderPublishingQuality of CareQuality of lifeRiskRoleScheduleSelf CareSelf PerceptionSelf-Help DevicesSmall Business Innovation Research GrantSocial NetworkSocial supportStandardizationStressSupport SystemSystemSystems IntegrationTechnologyTrainingTraining ProgramsVisitVisualVoiceWellness CenterWorkacceptability and feasibilitybaseburnoutcare coordinationcaregiver educationcaregivingcognitive testingcommercializationcommunity buildingcostdashboarddementia caredesignexperiencefamily burdenfamily caregivingfunctional statusimprovedinnovationmHealthmemory careperson centeredphysical conditioningprogramsresponseskillssocialusabilityvisual map
项目摘要
Project Summary Abstract
The MapHabit System (MHS) is our neuroscience-based interactive care management platform that utilizes a
patented visual mapping system supported by smart devices to improve cognition and reinforce routine habits
in individuals living with AD/ADRD. The MHS approach relies on the discovery that certain regions of the brain
that underlie habit and procedural learning are spared during the course of AD/ADRD, and these regions can
help maintain activities of daily living (ADLs). Unmet needs addressed by the technical innovation for this
FastTrack: Caregiving is commonly acknowledged as one of the most stressful, under-recognized, under-paid,
and under-supported jobs. The new MHS+Caregiver Training Program (CTP) will offer key innovative feature
to enhance the caregivers’ own quality of life, which, in turn, will result in reduced turnover and reduced
caregiver-related cost burdens in all types of care settings, hospital systems, and for payers and providers.
This will make MHS a unique mHealth product in the AD/ADRD community and will increase its market
competitiveness, attract in-home users and be especially appealing to memory care facilities that are
concerned with achieving measurable improvements in managing caregiver burden. The CTP will feature
innovative components designed to directly support caregivers in their role, including self-paced learning
starting with understanding the caregiver’s knowledge and skill level; interactive live coaching sessions; easy
to use caregiver-centric dashboards to share information, and social networking capabilities to promote social
support and community building.
Phase I, Aim 1, will build out the CTP into the MHS platform. Phase I, Aim 2, will assess usability,
acceptability and feasibility of the CTP using iterative usability studies involving 15 caregiver/patient dyads to
determine optimal user experience, and modify the build accordingly. Phase II, Aim 1, we’ll build out enhanced
user support modules to improve the CTP experience, including visual map games to increase caregiver self-
awareness, motivation, and learning, social networks to provide social support connection to other caregivers,
and a caregiver-centric dashboard for caregivers to track their own stress and well-being, as well as key
patient performance measures. Phase II, Aim 2, will assess usability, acceptability and feasibility of the
enhanced CTP features. Phase II, Aim 3, we’ll conduct a RCT (n=50 caregiver/patient dyads) to determine if
adding the CTP to the MHS leads to enhanced caregiver and patient outcomes compared to the MHS alone.
We hypothesize that enhancing caregiver knowledge and social and emotional support will improve caregiver
quality of life, which will, in turn, improve the patient’s overall quality of care and functional status. The primary
data driven outcome will be caregiver quality of life. Patient care, determined by the MHS and standardized
cognitive assessments as well as self-reported caregiver and patient satisfaction will be assessed as well. This
integrative, easy to use caregiver-centric training program will be unique to the caregiver market.
项目摘要摘要
Maphabit系统(MHS)是我们基于神经科学的互动护理管理平台,它利用
智能设备支持的专利视觉映射系统,以改善认知和增强常规习惯
在AD/ADRD的个人中。 MHS方法依赖于大脑某些地区的发现
在广告/ADRD过程中,习惯和程序学习是基于的,这些地区可以
帮助维持日常生活的活动(ADL)。技术创新所满足的需求未满足
FastTrack:护理通常被公认为是压力最大,认可,未付费不足的人之一
和支持的工作不足。新的MHS+护理人员培训计划(CTP)将提供关键的创新功能
为了提高照顾者自己的生活质量,这反过来会导致营业额减少并减少
在所有类型的护理环境,医院系统以及付款人和提供者中,与照料者相关的人相关。
这将使MHS成为广告/ADRD社区中独特的MHealth产品,并将增加其市场
竞争力,吸引家庭用户,并特别吸引着记忆护理设施
涉及在管理护理人员负担方面取得可衡量的改善。 CTP将功能
创新组件旨在直接支持护理人员的角色,包括自定进度学习
从了解护理人员的知识和技能水平开始;互动现场教练会议;简单的
使用以护理人员为中心的仪表板共享信息和社交网络功能以促进社交
支持和社区建设。
第一阶段AIM 1将将CTP构建到MHS平台。第一阶段AIM 2将评估可用性,
CTP使用迭代可用性研究的可接受性和可行性,涉及15个护理人员/患者二元组
确定最佳用户体验,并相应地修改构建。 II阶段,AIM 1,我们将建立增强的
用户支持模块可以改善CTP体验,包括视觉地图游戏以增加照顾者自我
意识,动力和学习,社交网络,向其他护理人员提供社会支持联系,
以及一个以护理人员为中心的仪表板,供照顾者跟踪自己的压力和福祉,以及关键
患者绩效指标。 II阶段AIM 2将评估可用性,可接受性和可行性
增强的CTP功能。 II阶段,AIM 3,我们将进行RCT(n = 50个护理人员/患者二元),以确定是否是否
与仅MHS相比,将CTP添加到MHS中会导致护理人员和患者结果增强。
我们假设增强照顾者知识以及社交和情感支持将改善照顾者
生活质量,这将改善患者的整体护理和功能状况。主要
数据驱动的结果将是护理人员的生活质量。由MHS确定并标准化的患者护理
也将评估认知评估以及自我报告的护理人员和患者满意度。这
综合性,易于使用的以护理人员为中心的培训计划将是护理人员市场所独有的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Golden其他文献
Matthew Golden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Golden', 18)}}的其他基金
An assistive-technology based Caregiver Training Program (CTP) to enhance caregiver effectiveness, well-being, and quality of life, which will improve overall care for individuals living with AD/ADRD.
基于辅助技术的护理人员培训计划 (CTP),旨在提高护理人员的效率、福祉和生活质量,从而改善 AD/ADRD 患者的整体护理。
- 批准号:
10834789 - 财政年份:2022
- 资助金额:
$ 44.98万 - 项目类别:
Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
- 批准号:
10683426 - 财政年份:2019
- 资助金额:
$ 44.98万 - 项目类别:
Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
- 批准号:
10325279 - 财政年份:2019
- 资助金额:
$ 44.98万 - 项目类别:
Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
- 批准号:
10590558 - 财政年份:2019
- 资助金额:
$ 44.98万 - 项目类别:
Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
- 批准号:
10468936 - 财政年份:2019
- 资助金额:
$ 44.98万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
- 批准号:
10643624 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Using Artificial Intelligence to Predict Cognitive Training Response in Amnestic Mild Cognitive Impairment
使用人工智能预测遗忘型轻度认知障碍患者的认知训练反应
- 批准号:
10572105 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Dual-Task Training Exercise to Reduce Falls in Older Adults with Mild Cognitive Impairment
双任务训练可减少患有轻度认知障碍的老年人跌倒的情况
- 批准号:
10578178 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别:
Statistical methods for enriched clinical trials with applications to Alzheimer's disease research
丰富临床试验的统计方法及其在阿尔茨海默病研究中的应用
- 批准号:
10607649 - 财政年份:2023
- 资助金额:
$ 44.98万 - 项目类别: