Resting state connectivity signatures of obsessive compulsive symptoms
强迫症状的静息状态连接特征
基本信息
- 批准号:10478918
- 负责人:
- 金额:$ 5.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdolescentAffectAreaBig DataBrainChildChildhoodClinicalClinical DataClinical SkillsCognitive TherapyCommunitiesComplexComputing MethodologiesDataData SetDevelopmentDiagnosisDiffuseDisease remissionEarly InterventionExhibitsFamilyFunctional Magnetic Resonance ImagingFutureGenerationsGoalsGoldIndividualInstitutesLifeMachine LearningMagnetic Resonance ImagingMajor Depressive DisorderMedical centerMental disordersNational Institute of Mental HealthNew YorkNew York CityObsessive compulsive behaviorObsessive-Compulsive DisorderOralOutcomePatternPhysiciansPrediction of Response to TherapyPrevalencePrevention strategyProbabilityPsychiatric therapeutic procedurePsychiatryReproducibilityResearchResearch ProposalsResourcesRestRiskSamplingScientistSeveritiesSiteSymptomsTechnical ExpertiseTechniquesTestingThinkingTimeTrainingUnited StatesUniversitiesWritingYouthagedattenuationbasecase controlclinical developmentclinically relevantclinically significantcognitive developmentcomputerized toolsdesignfollow-upimage processingimprovedmachine learning algorithmmachine learning methodneuroimagingneuromechanismnovelpredicting responsepredictive signaturepreventprospectivepsychiatric symptomrelating to nervous systemrepetitive behaviorresponsesupervised learningsymptomatic improvementtheoriestreatment strategyunsupervised learning
项目摘要
PROJECT SUMMARY
Obsessive-compulsive disorder (OCD) is a disabling illness that exhibits bimodal timing of onset, with up to half
of cases beginning in childhood. Subclinical obsessive-compulsive symptoms (OCS) often precede the
development of clinically significant OCD, though symptoms in some children remit naturally over time.
However, the neural bases of OCS and their changes over development are poorly understood. Capitalizing on
large, publicly available datasets and sophisticated computational methods, I propose to examine functional
MRI signatures of OCS and their longitudinal trajectories in children and adolescents. Specifically, I will apply
machine learning to publicly available data from the Adolescent Brain Cognitive Development (ABCD) study, a
prospective community sample tracked longitudinally at 21 diverse sites across the United States, to reveal
whole-brain functional MRI patterns that correspond to OCS severity. Baseline data is already available from
approximately 12,000 children aged 9-10 whose families have committed to ongoing follow-up. I will then use
data from the independent Healthy Brain Network (HBN) study, which includes data from approximately 2,500
children from the New York City area, to statistically and clinically validate these patterns (Aim 1). I will then
combine baseline neuroimaging and clinical data with longitudinal follow-up clinical data from the ABCD study
to examine neural signatures that predict subsequent OCS trajectories (Aim 2). Finally, I will leverage data
collected from children with clinical-severity OCS (i.e., OCD) before and after gold-standard cognitive
behavioral therapy at the New York State Psychiatric Institute (NYSPI) to identify pre-treatment predictors of
response and remission (Exploratory Aim). Collectively, these aims will identify brain connectivity features that
correspond to reliable patterns in which OCS co-vary, which could hint at common mechanisms underlying
multiple symptoms and implicate specific circuits that can be targeted in future studies aimed at developing
and testing novel treatments and prevention strategies. Furthermore, this research proposal integrates a
detailed training plan that will bring me closer to my goal of becoming a physician-scientist focused on clinical
and computational psychiatry. Supported by the resources of both Columbia University Irving Medical Center
and the NYSPI, I will deepen my technical skills in MRI image processing, neuroimaging analysis, and machine
learning, while also improving my scientific writing, oral presentation, and clinical skills.
项目摘要
强迫症(OCD)是一种残疾疾病,表现出双峰的发作时间,最高一半
从童年开始的病例。亚临床强迫症症状(OC)通常在
临床上显着的强迫症的发展,尽管某些儿童的症状随着时间的流逝而自然发出。
但是,OC的神经底座及其对发展的变化知之甚少。大写
我建议大型,公开可用的数据集和复杂的计算方法,以检查功能
OCS的MRI签名及其在儿童和青少年中的纵向轨迹。具体来说,我会申请
机器学习是从青春期大脑认知发展(ABCD)研究中公开可用的数据,这是一项
潜在的社区样本在美国的21个不同地点进行了纵向跟踪,以揭示
与OCS严重程度相对应的全脑功能性MRI模式。基线数据已经可以从
大约有12,000名9-10岁的儿童致力于进行持续的随访。然后我会使用
来自独立健康大脑网络(HBN)研究的数据,其中包括大约2,500的数据
从纽约市地区到统计和临床验证这些模式的孩子(AIM 1)。然后我会
将基线神经影像学和临床数据与ABCD研究的纵向随访临床数据相结合
检查预测随后的OC轨迹的神经特征(AIM 2)。最后,我将利用数据
从具有临床严重性OCS(即OCD)的儿童收集到金标准认知之前和之后
纽约州精神病学研究所(NYSPI)的行为疗法,以确定
响应和缓解(探索目的)。总的来说,这些目标将确定大脑连接性功能
对应于OCS共同变化的可靠模式,这些模式可能暗示了基础的常见机制
多种症状,并暗示可以在未来的研究中针对的特定电路
并测试新的治疗方法和预防策略。此外,该研究提案将
详细的培训计划将使我更接近成为专注于临床的医师科学家的目标
和计算精神病学。由哥伦比亚大学欧文医学中心的资源支持
和NYSPI,我将加深我在MRI图像处理,神经影像分析和机器方面的技术技能
学习,同时还提高了我的科学写作,口头表现和临床技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tracey Chen Shi其他文献
Tracey Chen Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tracey Chen Shi', 18)}}的其他基金
Resting state connectivity signatures of obsessive compulsive symptoms
强迫症状的静息状态连接特征
- 批准号:
10387818 - 财政年份:2021
- 资助金额:
$ 5.03万 - 项目类别:
Resting state connectivity signatures of obsessive compulsive symptoms
强迫症状的静息状态连接特征
- 批准号:
10687841 - 财政年份:2021
- 资助金额:
$ 5.03万 - 项目类别:
相似国自然基金
区域医疗一体化对基层医疗机构合理用药的影响及优化策略——基于创新扩散理论
- 批准号:72304011
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
高温与臭氧复合暴露对我国心脑血管疾病寿命损失年的区域分异影响及未来风险预估研究
- 批准号:42305191
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米结构和低压协同影响下接触线区域蒸发液体的界面作用和界面传递特性
- 批准号:52376053
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
碳边境调节机制对我国区域经济、社会和环境协调发展的影响——考虑企业所有制异质性的研究
- 批准号:72303240
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
太平洋和大西洋年代际海温模态对大湄公河次区域夏季降水变化的协同影响研究
- 批准号:42375050
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 5.03万 - 项目类别:
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 5.03万 - 项目类别:
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 5.03万 - 项目类别:
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
- 批准号:
10752053 - 财政年份:2023
- 资助金额:
$ 5.03万 - 项目类别:
Neuromelanin MRI: A tool for non-invasive investigation of dopaminergic abnormalities in adolescent substance use.
神经黑色素 MRI:一种用于非侵入性调查青少年物质使用中多巴胺能异常的工具。
- 批准号:
10735465 - 财政年份:2023
- 资助金额:
$ 5.03万 - 项目类别: