Inferring cell state tumor microenvironment maps by integrating single-cell and spatial transcriptomics

通过整合单细胞和空间转录组学推断细胞状态肿瘤微环境图

基本信息

  • 批准号:
    10478987
  • 负责人:
  • 金额:
    $ 19.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

SUMMARY Single-cell RNA-Sequencing (scRNA-Seq) has proved to be a transformative technology for cancer biology, enabling the unbiased transcriptomic profiling of individual tumor cells and revealing a striking amount of transcriptional heterogeneity in malignant cells. Many reports in recent years have identified a range of cancer cell states in diverse cancer types suggesting that these are stable and functional tumor units, with roles in tumor maintenance and progression. However, a major shortcoming of scRNA-Seq analysis is the loss of spatial information which follows from the dissociation of the tumor prior to sequencing. Lacking knowledge of the general location of each cell within the tissue, as well as its local neighborhood, scRNA-Seq cannot alone inform us about the complex set of relationships among cancer cell states, together with their interactions with the elements of the tumor microenvironment. Spatial transcriptomics is a disruptive new technology that for the first time is able to measure whole transcriptomes in a robust fashion throughout a tissue. While spatial transcriptomics maps the expression of all genes simultaneously – enabling systematic and unbiased transcriptome analysis – it is not itself a single-cell technology and thus also cannot alone inform us on the patterning of cancer cell states together with states of the tumor microenvironment. Sensitive and robust algorithms are thus required to harness the full power implicit in an integration of these technologies. Here we propose to develop a new computational method called SNAP (Single-cell Neighborhood Map) which uses matched scRNA-Seq and spatial transcriptomics data from the same tumor to infer the spatial location of each scRNA-Seq-identified cell by reference to the spatial transcriptomics data, and produces a neighborhood transcriptome for each scRNA-Seq cell. To analyze these novel neighborhood transcriptomes we propose an approach to cluster cells with common patterns of neighbors, thereby identifying sets of colocalizing cell states. SNAP promises to exploit the complementary aspects of single-cell and spatial transcriptomics to link co- localizing cancer cell states and states of the tumor microenvironment. The methodology presented here includes several novel algorithms, all of which will be made freely available to the community, where we expect them to be broadly applicable across cancer biology.
概括 单细胞 RNA 测序 (scRNA-Seq) 已被证明是癌症生物学的一项变革性技术, 能够对单个肿瘤细胞进行公正的转录组分析,并揭示大量的 近年来的许多报告已经确定了一系列癌症的转录异质性。 不同癌症类型中的细胞状态表明这些是稳定且有功能的肿瘤单位,在 然而,scRNA-Seq 分析的一个主要缺点是丢失了 缺乏测序前肿瘤解离产生的空间信息。 scRNA-Seq 无法单独确定组织内每个细胞的大致位置及其局部邻域 告诉我们癌细胞状态之间复杂的关系,以及它们与 空间转录组学是一项颠覆性的新技术。 第一次能够在整个组织中以稳健的方式测量整个转录组。 转录组学同时绘制所有基因的表达图谱——实现系统性和公正性 转录组分析——它本身不是单细胞技术,因此也不能单独告诉我们 癌细胞状态的模式以及肿瘤微环境的状态敏感和稳健。 因此,需要算法来充分利用这些技术集成中隐含的全部功能。 建议开发一种称为 SNAP(单细胞邻域图)的新计算方法,该方法使用 匹配来自同一肿瘤的 scRNA-Seq 和空间转录组数据,以推断每个肿瘤的空间位置 scRNA-Seq 参考空间转录组数据识别细胞,并生成邻域 每个 scRNA-Seq 细胞的转录组 为了分析这些新的邻近转录组,我们提出了一个 方法对具有共同邻居模式的细胞进行聚类,从而识别一组共定位细胞状态。 SNAP 承诺利用单细胞和空间转录组学的互补性来将共同的 定位癌细胞状态和肿瘤微环境的状态此处介绍的方法。 包括几种新颖的算法,所有这些算法都将免费提供给社区,我们期望 它们广泛适用于癌症生物学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ITAI YANAI其他文献

ITAI YANAI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ITAI YANAI', 18)}}的其他基金

Computational framework for analyzing and annotating single bacterium RNA-Seq data
用于分析和注释单细菌 RNA-Seq 数据的计算框架
  • 批准号:
    10444669
  • 财政年份:
    2022
  • 资助金额:
    $ 19.41万
  • 项目类别:
Computational framework for analyzing and annotating single bacterium RNA-Seq data
用于分析和注释单细菌 RNA-Seq 数据的计算框架
  • 批准号:
    10610447
  • 财政年份:
    2022
  • 资助金额:
    $ 19.41万
  • 项目类别:
Computational approaches for the systematic detection of cell-cell interactions by spatial transcriptomics - Resubmission - 1
通过空间转录组学系统检测细胞间相互作用的计算方法 - 重新提交 - 1
  • 批准号:
    10299124
  • 财政年份:
    2021
  • 资助金额:
    $ 19.41万
  • 项目类别:
Computational approaches for the systematic detection of cell-cell interactions by spatial transcriptomics - Resubmission - 1
通过空间转录组学系统检测细胞间相互作用的计算方法 - 重新提交 - 1
  • 批准号:
    10580839
  • 财政年份:
    2021
  • 资助金额:
    $ 19.41万
  • 项目类别:
Computational approaches for the systematic detection of cell-cell interactions by spatial transcriptomics - Resubmission - 1
通过空间转录组学系统检测细胞间相互作用的计算方法 - 重新提交 - 1
  • 批准号:
    10441528
  • 财政年份:
    2021
  • 资助金额:
    $ 19.41万
  • 项目类别:
IMAT-ITCR Collaboration: Hyperplex lineage analysis of tumor cell states in vivo
IMAT-ITCR 合作:体内肿瘤细胞状态的 Hyperplex 谱系分析
  • 批准号:
    10678070
  • 财政年份:
    2021
  • 资助金额:
    $ 19.41万
  • 项目类别:
Inferring cell state tumor microenvironment maps by integrating single-cell and spatial transcriptomics
通过整合单细胞和空间转录组学推断细胞状态肿瘤微环境图
  • 批准号:
    10305360
  • 财政年份:
    2021
  • 资助金额:
    $ 19.41万
  • 项目类别:
Comparative transcriptomics for nematode development
线虫发育的比较转录组学
  • 批准号:
    7111245
  • 财政年份:
    2006
  • 资助金额:
    $ 19.41万
  • 项目类别:
Comparative transcriptomics for nematode development
线虫发育的比较转录组学
  • 批准号:
    7198081
  • 财政年份:
    2006
  • 资助金额:
    $ 19.41万
  • 项目类别:
Comparative transcriptomics for nematode development
线虫发育的比较转录组学
  • 批准号:
    7371013
  • 财政年份:
    2006
  • 资助金额:
    $ 19.41万
  • 项目类别:

相似国自然基金

“共享建筑学”的时空要素及表达体系研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
  • 批准号:
    51778419
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
宜居环境的整体建筑学研究
  • 批准号:
    51278108
  • 批准年份:
    2012
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
  • 批准号:
    20801051
  • 批准年份:
    2008
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
  • 批准号:
    10326345
  • 财政年份:
    2021
  • 资助金额:
    $ 19.41万
  • 项目类别:
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
  • 批准号:
    10540773
  • 财政年份:
    2021
  • 资助金额:
    $ 19.41万
  • 项目类别:
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
  • 批准号:
    10090279
  • 财政年份:
    2021
  • 资助金额:
    $ 19.41万
  • 项目类别:
Inferring cell state tumor microenvironment maps by integrating single-cell and spatial transcriptomics
通过整合单细胞和空间转录组学推断细胞状态肿瘤微环境图
  • 批准号:
    10305360
  • 财政年份:
    2021
  • 资助金额:
    $ 19.41万
  • 项目类别:
Optically-Guided Bladder Biopsy Using Polarized Elastic Scattering Spectroscopy
使用偏振弹性散射光谱进行光引导膀胱活检
  • 批准号:
    7480878
  • 财政年份:
    2008
  • 资助金额:
    $ 19.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了