Inferring cell state tumor microenvironment maps by integrating single-cell and spatial transcriptomics
通过整合单细胞和空间转录组学推断细胞状态肿瘤微环境图
基本信息
- 批准号:10305360
- 负责人:
- 金额:$ 23.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchitectureAtlas of Cancer Mortality in the United StatesBiologicalCancer BiologyCatalogsCell CountCellsCommunitiesComplexComputing MethodologiesConsensusDataData AnalysesDissociationElementsGenerationsGenesGenetic ProgrammingGenetic TranscriptionGlassHeterogeneityImmunofluorescence ImmunologicIndividualIntuitionKnowledgeLinkLocalized Malignant NeoplasmLocationMaintenanceMalignant NeoplasmsMapsMeasuresMethodologyMethodsModalityMolecularNeighborhoodsNeoplasm MetastasisPatternPortraitsReportingResearch PersonnelRoleSlideSpottingsTechnologyTimeTissuesTreatment FailureTreesWorkcancer cellcancer typecell typeinnovationinsightneoplastic cellnew technologynovelnovel strategiessingle cell technologysingle moleculesingle-cell RNA sequencingtranscriptometranscriptomicstumortumor microenvironmenttumor progression
项目摘要
SUMMARY
Single-cell RNA-Sequencing (scRNA-Seq) has proved to be a transformative technology for cancer biology,
enabling the unbiased transcriptomic profiling of individual tumor cells and revealing a striking amount of
transcriptional heterogeneity in malignant cells. Many reports in recent years have identified a range of cancer
cell states in diverse cancer types suggesting that these are stable and functional tumor units, with roles in
tumor maintenance and progression. However, a major shortcoming of scRNA-Seq analysis is the loss of
spatial information which follows from the dissociation of the tumor prior to sequencing. Lacking knowledge of
the general location of each cell within the tissue, as well as its local neighborhood, scRNA-Seq cannot alone
inform us about the complex set of relationships among cancer cell states, together with their interactions with
the elements of the tumor microenvironment. Spatial transcriptomics is a disruptive new technology that for the
first time is able to measure whole transcriptomes in a robust fashion throughout a tissue. While spatial
transcriptomics maps the expression of all genes simultaneously – enabling systematic and unbiased
transcriptome analysis – it is not itself a single-cell technology and thus also cannot alone inform us on the
patterning of cancer cell states together with states of the tumor microenvironment. Sensitive and robust
algorithms are thus required to harness the full power implicit in an integration of these technologies. Here we
propose to develop a new computational method called SNAP (Single-cell Neighborhood Map) which uses
matched scRNA-Seq and spatial transcriptomics data from the same tumor to infer the spatial location of each
scRNA-Seq-identified cell by reference to the spatial transcriptomics data, and produces a neighborhood
transcriptome for each scRNA-Seq cell. To analyze these novel neighborhood transcriptomes we propose an
approach to cluster cells with common patterns of neighbors, thereby identifying sets of colocalizing cell states.
SNAP promises to exploit the complementary aspects of single-cell and spatial transcriptomics to link co-
localizing cancer cell states and states of the tumor microenvironment. The methodology presented here
includes several novel algorithms, all of which will be made freely available to the community, where we expect
them to be broadly applicable across cancer biology.
概括
事实证明,单细胞RNA - 序列(SCRNA-SEQ)是癌症生物学的一种变革性技术,
实现单个肿瘤细胞的无偏转录分析和启发量的含量
恶性细胞中的转录异质性。
各种癌症类型中的细胞状态表明它们是稳定且功能性肿瘤单元,在
但是,肿瘤维持和进展。
在测序之前遵循肿瘤解离的空间信息
每个细胞在组织中的一般位置以及当地的邻居引擎盖,scrna-seq不能孤单
告知我们有关癌细胞状态之间复杂的关系以及与之相互作用的复杂关系。
肿瘤微环境的元素。
第一次能够以强大的快速方式测量整个转录
转录组学映射所有同时基因的表达 - 启用系统和无偏见
转录组分析 - 它是诺言是一种单细胞技术,因此在
癌细胞态的模式以及肿瘤微环境的状态。
算法是利用这些技术集成的全部力量含义所需的。
建议开发一种名为SNAP(单细胞邻域图)的新计算机方法
匹配的SCRNA-SEQ和空间转录数据来自相同肿瘤以推断每个肿瘤的空间位置
通过参考空间转录组学数据,SCRNA-Seq识别的单元格,并产生一个邻域
每个SCRNA-SEQ细胞的转录组。
与邻居共同模式的聚类细胞的方法,鉴定共定位细胞态的集合。
SNAP纸张来利用单细胞转录组学的兼容,以将共同协调联系起来
将癌细胞状态和肿瘤微环境的状态定位。
包括几种新颖的算法,所有这些算法将提供给社区,我们希望
它们在癌症生物学中广泛适用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITAI YANAI其他文献
ITAI YANAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITAI YANAI', 18)}}的其他基金
Computational framework for analyzing and annotating single bacterium RNA-Seq data
用于分析和注释单细菌 RNA-Seq 数据的计算框架
- 批准号:
10444669 - 财政年份:2022
- 资助金额:
$ 23.77万 - 项目类别:
Computational framework for analyzing and annotating single bacterium RNA-Seq data
用于分析和注释单细菌 RNA-Seq 数据的计算框架
- 批准号:
10610447 - 财政年份:2022
- 资助金额:
$ 23.77万 - 项目类别:
Computational approaches for the systematic detection of cell-cell interactions by spatial transcriptomics - Resubmission - 1
通过空间转录组学系统检测细胞间相互作用的计算方法 - 重新提交 - 1
- 批准号:
10299124 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
Computational approaches for the systematic detection of cell-cell interactions by spatial transcriptomics - Resubmission - 1
通过空间转录组学系统检测细胞间相互作用的计算方法 - 重新提交 - 1
- 批准号:
10580839 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
Computational approaches for the systematic detection of cell-cell interactions by spatial transcriptomics - Resubmission - 1
通过空间转录组学系统检测细胞间相互作用的计算方法 - 重新提交 - 1
- 批准号:
10441528 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
Inferring cell state tumor microenvironment maps by integrating single-cell and spatial transcriptomics
通过整合单细胞和空间转录组学推断细胞状态肿瘤微环境图
- 批准号:
10478987 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
IMAT-ITCR Collaboration: Hyperplex lineage analysis of tumor cell states in vivo
IMAT-ITCR 合作:体内肿瘤细胞状态的 Hyperplex 谱系分析
- 批准号:
10678070 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
Comparative transcriptomics for nematode development
线虫发育的比较转录组学
- 批准号:
7111245 - 财政年份:2006
- 资助金额:
$ 23.77万 - 项目类别:
Comparative transcriptomics for nematode development
线虫发育的比较转录组学
- 批准号:
7198081 - 财政年份:2006
- 资助金额:
$ 23.77万 - 项目类别:
Comparative transcriptomics for nematode development
线虫发育的比较转录组学
- 批准号:
7371013 - 财政年份:2006
- 资助金额:
$ 23.77万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10326345 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10540773 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
Inferring cell state tumor microenvironment maps by integrating single-cell and spatial transcriptomics
通过整合单细胞和空间转录组学推断细胞状态肿瘤微环境图
- 批准号:
10478987 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10090279 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
Optically-Guided Bladder Biopsy Using Polarized Elastic Scattering Spectroscopy
使用偏振弹性散射光谱进行光引导膀胱活检
- 批准号:
7480878 - 财政年份:2008
- 资助金额:
$ 23.77万 - 项目类别: