A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
基本信息
- 批准号:10478331
- 负责人:
- 金额:$ 68.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAction PotentialsAddressAdhesivesAffectAreaAtomic Force MicroscopyBiologicalBiological AssayBiological MarkersBiological SciencesBiologyBiomedical ResearchCardiacCardiac MyocytesCardiologyCardiotoxicityCell surfaceCellsClinicalConsumptionDevelopmentDevicesDiseaseDoctor of PhilosophyDrug EvaluationElasticityElectrodesElectronicsElectrophysiology (science)EndocrinologyEventFailureFeedbackFunctional disorderGeneticGoldHourHumanIn VitroIndividualIndustryIon ChannelIonsLaboratoriesLaboratory TechniciansLearningLibrariesLiquid substanceMasksMeasurementMeasuresMembrane PotentialsMicrobiologyMicroelectrodesModalityMuscle FibersNanostructuresNanotechnologyNeurologyNeuronsNeurosciencesPatientsPerformancePharmaceutical PreparationsPharmaceutical SolutionsPharmacologic SubstancePharmacologyPhenotypePopulationPropertyPublishingPumpReactionRecordsResearchResearch PersonnelResolutionScanning Probe MicroscopesScientistSmall Business Innovation Research GrantSpectrum AnalysisStructure of beta Cell of isletSystemTechniquesTechnologyTestingTimeTissue SampleToxic effectTrainingbasecantileverconsumer demanddesigndrug candidatedrug discoveryelastographyelectrical propertyheart cellheart functionimprovedinduced pluripotent stem cellmedical schoolsnanomachinenovel therapeuticspatch clamppersonalized medicineresponsesealsensortoolvalidation studiesviscoelasticity
项目摘要
Single patch clamping is used to multiple areas of biology such as cardiology (cardiomyocytes),
neurology/neuroscience (neurons), endocrinology (pancreatic beta cells), myology (muscle fibers), and even
microbiology (bacterial ion channels). Applied Nanostructures (AppNano) in partnership with the Icahn School
of Medicine is bringing to the market a unique solution addressing a major market need in electrophysiology
measurements. With its advanced features and unmatched resolution, the device will enable researchers in
academia and in the highly competitive life sciences industry to answer important scientific questions and
develop and test new drugs fueling the discovery of new pharmaceutical solutions. As a result, these companies
will be better equipped to keep up with the ever-increasing consumer demand for pharmaceutical products. In
this SBIR we are developing a semi-automated system based on an micro-electromechanical systems (MEMS)
sensor pipette used with atomic force microscopes (AFM) that can measure, simultaneously and directly,
electrophysiological properties (such as action potentials (AP)), contractile forces on single cardiomyocytes
(CM), and single cell elasticity. This system offers high content analysis (HCA) at a single cell level. The system
enables a significant increase in performance and a dramatic decrease in time to complete a measurement. With
times <5 min compared to conventional patch clamping (2-4 hours) achieved by leveraging micromachining and
advanced atomic force microscopy (force spectroscopy). The proposed system will simplify patch clamping
measurements and require minimal training. This system will make it reasonably easy for any laboratory
technician to conduct these measurements, in contrast to conventional patch clamping, which has a steep
learning curve and requires a PhD-level scientist. In addition to action potential and contraction force, we can
also evaluate the viscoelastic and adhesive properties of the cells. Our device will be capable of addressing a
critical bottleneck in drug discovery that arises during the final characterization of drug candidates. The device
can detect single cell changes that would otherwise be masked when averaged over large populations, offering
the advantage of measuring rare events, such as toxicity indicators that affect the beating phenotype or action
potential (AP) of subpopulations of CMs. This tool finds applications in: drug evaluation/discovery, in the study
of Cardiomyocytes (CM) derived from human induced pluripotent stem cells (CM-iPSCs), as a general patch-
clamping tool, and in clinical settings. In the setting of personalized medicine, for example, the tool allows for
interrogation of enough iPSC-CM (generated from a patient’s tissue sample for instance) to produce statistically
meaningful results within several minutes that would indicate an individual’s reaction to a specific drug.
Additionally this tool finds application in the study to other types of cardiotoxic effects and in other fields of
biomedical research that use electrophysiology (patch clamping), such as neuroscience/neurology and
endocrinology.
单片夹具用于生物学的多个领域,例如心脏病学(心肌细胞),
神经学/神经科学(神经元),内分泌学(胰腺β细胞),肌肉学(肌肉纤维),甚至
微生物学(细菌离子通道)。与伊坎学校合作的应用纳米结构(APPNANO)
医学正在为市场带来一个独特的解决方案,以解决电生理学的主要市场需求
测量。凭借其高级功能和无与伦比的分辨率,该设备将使研究人员能够
学术界和竞争激烈的生命科学行业,以回答重要的科学问题和
开发和测试新药,以发现新的药物解决方案。结果,这些公司
将有更好的能力来跟上消费者对药品的不断增长的需求。
我们正在开发基于微电力系统(MEMS)的半自动化系统(MEMS)
传感器移液器与原子力显微镜(AFM)一起使用,可以轻松,直接测量
电生理特性(例如动作电位(AP)),单个心肌细胞上的收缩力
(CM)和单细胞弹性。该系统在单个单元格级别提供高含量分析(HCA)。系统
使性能显着提高和时间急剧减少,以完成测量。和
与传统的贴片夹具(2-4小时)相比,时间<5分钟(2-4小时)通过利用微加工和
晚期原子力显微镜(力光谱)。提出的系统将简化贴片夹具
测量并需要最少的培训。该系统将使任何实验室都非常容易
与传统的贴片夹具相比,技术人员进行这些测量
学习曲线,需要博士级的科学家。除了动作潜力和收缩力,我们还可以
还评估细胞的粘弹性和粘合性特性。我们的设备将能够解决
在候选药物的最终表征期间出现的药物发现中的关键瓶颈。设备
可以检测到在大量人群上平均时否则将掩盖的单细胞更改,提供
测量罕见事件的优点,例如影响跳动表型或动作的毒性指标
CMS亚群的潜力(AP)。该工具在研究中找到:药物评估/发现中的应用
源自人诱导的多能干细胞(CM-IPSC)的心肌细胞(CM),作为一般斑块
夹紧工具,以及在临床环境中。例如,在个性化医学的情况下,该工具允许
询问足够的IPSC-CM(例如,从患者的组织样本中生成),以产生统计
有意义的结果在几分钟之内表明个人对特定药物的反应。
此外,该工具在研究中发现对其他类型的心脏毒性作用和其他领域的应用
使用电生理学(斑块夹)的生物医学研究,例如神经科学/神经病学和
内分泌学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ami Chand其他文献
Ami Chand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ami Chand', 18)}}的其他基金
A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
- 批准号:
10615901 - 财政年份:2022
- 资助金额:
$ 68.04万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
- 批准号:
10615901 - 财政年份:2022
- 资助金额:
$ 68.04万 - 项目类别:
Fiber-Delivered Programmable Supercontinuum Laser Adaptive to EvolvingNeurophotonic Research
光纤传输的可编程超连续谱激光器适应不断发展的神经光子学研究
- 批准号:
9915977 - 财政年份:2019
- 资助金额:
$ 68.04万 - 项目类别:
Novel nanotechnology-based optical stimulation platform for predictive cardiotoxicity assessment
基于新型纳米技术的光刺激平台,用于预测心脏毒性评估
- 批准号:
9347619 - 财政年份:2017
- 资助金额:
$ 68.04万 - 项目类别:
Identification and Regulation of the Myometrial Leak Current
子宫肌层漏电流的识别和调节
- 批准号:
8644504 - 财政年份:2014
- 资助金额:
$ 68.04万 - 项目类别: