Fiber-Delivered Programmable Supercontinuum Laser Adaptive to EvolvingNeurophotonic Research
光纤传输的可编程超连续谱激光器适应不断发展的神经光子学研究
基本信息
- 批准号:9915977
- 负责人:
- 金额:$ 43.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAchievementAction PotentialsAddressAnatomyAnimalsAreaBRAIN initiativeBehavioral ResearchBehavioral SciencesBiomedical EngineeringBiophotonicsBrainBrain DiseasesBrain imagingBusinessesCellsCollaborationsCommunitiesCoupledDevicesElectrophysiology (science)Energy MetabolismEngineeringEnvironmentFiberFormalinFrequenciesGenerationsGeneticGoalsHeadHistopathologyHospitalsHumanImageIn VitroIndustrializationInterventionLabelLaboratoriesLaboratory AnimalsLasersMetabolicMicroscopeMusNeuronsNeurosciencesNeurosurgeonOperating RoomsOperative Surgical ProceduresOphthalmologic Surgical ProceduresOpticsOrganoidsOutcomeOutputPathologistPathologyPerformancePhasePhase TransitionPhenotypePhysiologic pulsePopulationPre-Clinical ModelProductionResearchResearch PersonnelResearch PriorityResolutionRodentScientistShapesSliceSmall Business Innovation Research GrantSourceSpecialistStructureSurgeonSurgical marginsSynapsesSystemTechnologyTestingTimeTissuesTrainingTranslatingUnited States National Institutes of HealthVascularizationVeterinariansWorkanimal facilitybasebrain researchbrain surgerybrain tissuecalcium indicatorcommercializationdriving forcedrug developmentdrug discoveryholographic stimulationimaging probeimprovedin vivoin vivo imaginginnovative technologiesmedical specialtiesmetrologyminiaturizemultidisciplinaryneural circuitneural networkoperationoptogeneticsphotonicsportabilitypre-clinicalpreventprogramsprototyperadiologistreal-time imagesrelating to nervous systemresearch and developmentspatiotemporaltherapeutic developmenttooluser-friendly
项目摘要
SUMMARY
Neurophotonics, including the prominent example of optogenetics, has been the driving force for brain research
and one focal area of the NIH BRAIN Initiative established in 2013. In contrast to the genetic and biophotonic
advancements that have transformed this field, the progress in laser source technology underlying these
advancements has lagged behind, resulting in three technical barriers that limit the next level of scientific
achievement in brain and behavioral sciences: (1) neuroscientists and biophotonic scientists have been limited
by readily available commercial lasers that may not be the best solutions for their intended applications, due
largely to the lack of full tunability in parameters such as wavelength, power, and temporal profile; (2) the user-
unfriendly operation of tunable customer or commercial lasers has hindered the extension of laser source
technology beyond non-laser experts and dedicated optical laboratories, and (3) the lack of adaption of installed
lasers with free-space beam delivery often render them obsolete when new neuroscience needs and
applications emerge. A fiber-deliverable programmable supercontinuum laser, based on systematic preliminary
work in an academic laboratory, has potential to simultaneously overcome the three technical barriers.
The prototype of this laser has shown promise to be applicable to general neuroscience, including diverse
species (small animals, rodents, and humans), states (in vitro/ex vivo, head-fixed, and freely behaving), settings
(optical laboratory, animal facility, pathology department, and operating room), operators (laser experts,
imaging neuroscientists, veterinarians, pathologists, and neurosurgeons), and goals (basic study, therapeutics
development, drug discovery, precision pathology, intraoperative assessment, and laser-assisted surgeries).
It is thus desirable to seek further R&D opportunity in a small business environment, in order to allow wide
access to this laser by the neuroscience community not trained extensively in laser source engineering. In this
project, the R&D effort will first aim to overcome the remaining technical obstacles that hinder the seamless
integration of coherent fiber supercontinuum generation and programmable pulse shaping, two photonic
technologies dispensable for laser source engineering per se but indispensable for the laser source engineering
that targets neuroscience. Subsequently, this laser will be tested in two prototypical systems broadly
representative of neurophotonic applications with and without neural intervention. The construction of a more
reliable prototype of this laser and the demonstration of its feasibility in the two prototypical neurophotonic
systems will enable smooth transition of this R&D effort (SBIR Phase I) to Phase II stage. The whole project
may ultimately facilitate wide access to cutting-edge ultrafast laser technology by the broad neuroscience
community, in consistency with one goal of the NIH BRAIN Initiative to translate innovative technologies for
brain or behavioral research from academia to the marketplace.
概括
神经光子学,包括光遗传学的突出例子,一直是大脑研究的驱动力
2013 年建立的 NIH BRAIN Initiative 的一个重点领域。与遗传和生物光子相比
改变这一领域的进步,这些进步背后的激光源技术的进步
进展滞后,导致了限制科学进步的三个技术障碍
脑和行为科学方面的成就:(1)神经科学家和生物光子科学家受到限制
通过现成的商业激光器,这可能不是其预期应用的最佳解决方案,因为
主要是由于波长、功率和时间分布等参数缺乏完全可调性; (2) 用户——
可调谐客户或商用激光器的不友好操作阻碍了激光源的扩展
技术超越非激光专家和专门的光学实验室,以及(3)安装的设备缺乏适应性
当新的神经科学需要和时,具有自由空间光束传输的激光器通常会使它们过时
应用程序出现。一种光纤传输的可编程超连续谱激光器,基于系统初步
在学术实验室工作,有潜力同时克服三个技术障碍。
这种激光器的原型已显示出有望适用于一般神经科学,包括各种神经科学
物种(小动物、啮齿动物和人类)、状态(体外/离体、头部固定和自由行为)、设置
(光学实验室、动物设施、病理科和手术室)、操作员(激光专家、
成像神经科学家、兽医、病理学家和神经外科医生)和目标(基础研究、治疗学
开发、药物发现、精密病理学、术中评估和激光辅助手术)。
因此,希望在小型企业环境中寻求进一步的研发机会,以便广泛
神经科学界没有接受过激光源工程方面的广泛培训,就可以使用这种激光器。在这个
项目中,研发工作首先旨在克服阻碍无缝集成的剩余技术障碍
相干光纤超连续谱生成和可编程脉冲整形的集成,两个光子
技术对于激光光源工程本身来说是可有可无的,但对于激光光源工程来说是必不可少的
针对神经科学。随后,该激光器将在两个原型系统中进行广泛测试
有或没有神经干预的神经光子应用的代表。建设更多
该激光器的可靠原型及其在两个典型神经光子中的可行性论证
系统将使这项研发工作(SBIR 第一阶段)顺利过渡到第二阶段。整个项目
最终可能会促进广泛的神经科学广泛使用尖端超快激光技术
社区,这与 NIH BRAIN Initiative 的一个目标是一致的,即将创新技术转化为
从学术界到市场的大脑或行为研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Durack其他文献
Matthew Durack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
共和盆地东北部地区隆升剥蚀过程对干热岩形成就位的影响:来自低温热年代学的制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
朱鹮野生种群营养生态位对繁殖成就的影响及保护对策研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
成就目标视角下建言韧性的形成机制与作用效果研究
- 批准号:72102228
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于目标成就评量的社区中医药健康管理服务评价及优化策略研究
- 批准号:71874047
- 批准年份:2018
- 资助金额:49.0 万元
- 项目类别:面上项目
科研人员流动与职业成就的关系研究
- 批准号:71874049
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Cardiac Sonogenetics: Noninvasive Stimulation of the Heart With Low-Intensity Focused Ultrasound
心脏声遗传学:用低强度聚焦超声对心脏进行无创刺激
- 批准号:
10599091 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
Cardiac Sonogenetics: Noninvasive Stimulation of the Heart With Low-Intensity Focused Ultrasound
心脏声遗传学:用低强度聚焦超声对心脏进行无创刺激
- 批准号:
10351918 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
Simultaneous functional MRI and Micro-Magnetic Nervous System Stimulation
同时进行功能性 MRI 和微磁神经系统刺激
- 批准号:
10154562 - 财政年份:2021
- 资助金额:
$ 43.26万 - 项目类别:
Identifying a Role for Vasoactive Intestinal Peptide Expressing Interneurons in a Mouse Model of Dravet Syndrome
鉴定血管活性肠肽表达中间神经元在 Dravet 综合征小鼠模型中的作用
- 批准号:
9907136 - 财政年份:2019
- 资助金额:
$ 43.26万 - 项目类别:
Identifying a Role for Vasoactive Intestinal Peptide Expressing Interneurons in a Mouse Model of Dravet Syndrome
鉴定血管活性肠肽表达中间神经元在 Dravet 综合征小鼠模型中的作用
- 批准号:
10062835 - 财政年份:2019
- 资助金额:
$ 43.26万 - 项目类别: