Pre-mRNA splicing regulation is critical for controlling macrophage activation
前 mRNA 剪接调节对于控制巨噬细胞激活至关重要
基本信息
- 批准号:10474615
- 负责人:
- 金额:$ 37.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Affinity ChromatographyAlternative SplicingAutomobile DrivingBiochemicalCell NucleusCellsChemicalsCodeComplexExcisionExonsGene ExpressionGeneticGenetic TranscriptionGoalsHeterogeneous-Nuclear Ribonucleoprotein Group MImmuneInflammation MediatorsInterleukin-6IntronsKnowledgeLipopolysaccharidesMacrophage ActivationMass Spectrum AnalysisMediatingModelingMolecularOrganellesOutcomePhosphorylationPost-Translational Protein ProcessingProtein DephosphorylationProtein SplicingRNARNA ProcessingRNA SplicingRNA-Binding ProteinsReadingRegulationResearchRoleSerineSignal TransductionSpliceosomesStarvationStimulusStressTranscriptViralcarcinogenesiscohortcombatcrosslinking and immunoprecipitation sequencingexperimental studyimmune activationknock-downmRNA Precursormacrophagepathogenphosphoproteomicsprogramsprotein protein interactionsmall hairpin RNAtranscriptome sequencing
项目摘要
PROJECT SUMMARY
Despite the substantial impact pre-mRNA splicing has on gene expression outcomes, little is known
about how the spliceosome itself is modified and regulated during cellular reprogramming. Innate immune cells
like macrophages reprogram gene expression when they sense a “danger signal,” such as a pathogen,
organelle damage, or chemical signal, to combat the detected threat. While changes that occur
transcriptionally during macrophage activation are well characterized, almost nothing is known about how pre-
mRNA splicing is regulated following immune stimuli. The long-term goal of this project is to uncover how
macrophage activation modifies the spliceosome and to connect these changes with innate immune gene
expression outcomes. The spliceosome is a complex and dynamic macromolecular machine. Its ability to
recognize introns and catalyze their removal relies on numerous RNA binding proteins that recognize specific
sequences in exons and introns to “read” the splicing code. The central hypothesis of this proposal is that
during macrophage activation, post-translational modification of splicing factors directs assembly of a
specialized spliceosome characterized by a distinct cohort of protein-protein interactions that promotes the
innate immune gene expression program. In support of this model, phosphoproteomic experiments reveal that
30+ splicing factors, many with known regulatory roles, are phosphorylated or dephosphorylated at specific
serine residues following lipopolysaccharide (LPS)-dependent activation of macrophages. Experiments
interrogating one such factor, hnRNP M, show that LPS treatment triggers dephosphorylation concomitant with
its redistribution in the nucleus. Loss of hnRNP M by shRNA-mediated knockdown in macrophages alters
alternative splicing of a number of pre-mRNAs and leads to hyper-induction of important innate immune
transcripts, including the potent inflammatory mediator IL-6 and the key viral restriction factor Mx1. This
proposal expands upon these observations, looking globally at changes to the spliceosome following
macrophage activation. It will combine high-throughput approaches, including affinity purification-mass
spectrometry, phosphoproteomics, RNA-seq, and RNA CLIP-seq with targeted genetic and biochemical
experiments to implicate specific splicing factors in driving innate immune gene expression changes. This
research program will fill key gaps in our knowledge of how splicing is regulated following macrophage
activation and further our understanding of how the spliceosome reads and interprets the splicing code not only
during innate immune activation but also during other cellular reprogramming, including differentiation, stress,
starvation, and carcinogenesis.
项目概要
尽管前 mRNA 剪接对基因表达结果具有重大影响,但人们知之甚少
关于剪接体本身在细胞重编程过程中如何被修饰和调节。
就像巨噬细胞在感知到“危险信号”(例如病原体)时重新编程基因表达一样,
细胞器损伤或化学信号,以对抗检测到的威胁而发生的变化。
巨噬细胞激活期间的转录已得到很好的表征,但几乎不知道如何预
mRNA 剪接在免疫刺激后受到调节 该项目的长期目标是揭示如何调节。
巨噬细胞激活会修饰剪接体并将这些变化与先天免疫基因联系起来
剪接体是一种复杂且动态的大分子机器。
识别内含子并催化其去除依赖于许多识别特定的RNA结合蛋白
外显子和内含子中的序列来“读取”剪接代码 该提案的中心假设是:
在巨噬细胞激活过程中,剪接因子的翻译后修饰指导巨噬细胞的组装
专门的剪接体,其特征是一组独特的蛋白质-蛋白质相互作用,可促进
为了支持这一模型,磷酸化蛋白质组学实验表明:
30 多个剪接因子,其中许多具有已知的调节作用,在特定的位置被磷酸化或去磷酸化
脂多糖(LPS)依赖性巨噬细胞激活实验后的丝氨酸残基。
研究其中一个因子 hnRNP M 表明,LPS 治疗会引发去磷酸化,同时
shRNA介导的巨噬细胞敲低导致hnRNP M在细胞核中的重新分布发生改变。
许多前体 mRNA 的选择性剪接并导致重要先天免疫的过度诱导
转录物,包括有效的炎症介质 IL-6 和关键的病毒限制因子 Mx1。
提案扩展了这些观察结果,从全局角度观察剪接体的变化如下
它将结合高通量方法,包括亲和纯化质量。
光谱分析、磷酸蛋白质组学、RNA-seq 和 RNA CLIP-seq 以及靶向遗传和生物化学
涉及驱动先天免疫基因表达变化的特定剪接因子的实验。
研究计划将填补我们关于巨噬细胞如何调控剪接的知识空白
激活并进一步我们对剪接体如何读取和解释剪接代码的理解
在先天免疫激活期间以及其他细胞重编程期间,包括分化、应激、
饥饿和致癌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristin Leigh Patrick其他文献
Kristin Leigh Patrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristin Leigh Patrick', 18)}}的其他基金
Mitochondria as crucial regulators of innate immune outcomes during Mycobacterium tuberculosis infection
线粒体作为结核分枝杆菌感染期间先天免疫结果的关键调节因子
- 批准号:
10426343 - 财政年份:2021
- 资助金额:
$ 37.03万 - 项目类别:
Mitochondria as crucial regulators of innate immune outcomes during Mycobacterium tuberculosis infection
线粒体作为结核分枝杆菌感染期间先天免疫结果的关键调节因子
- 批准号:
10298524 - 财政年份:2021
- 资助金额:
$ 37.03万 - 项目类别:
Mitochondria as crucial regulators of innate immune outcomes during Mycobacterium tuberculosis infection
线粒体作为结核分枝杆菌感染期间先天免疫结果的关键调节因子
- 批准号:
10624436 - 财政年份:2021
- 资助金额:
$ 37.03万 - 项目类别:
Pre-mRNA splicing regulation is critical for controlling macrophage activation
前 mRNA 剪接调节对于控制巨噬细胞激活至关重要
- 批准号:
10240558 - 财政年份:2019
- 资助金额:
$ 37.03万 - 项目类别:
相似国自然基金
TRIM25介导的泛素化及ISGylation通过选择性剪接和糖代谢调控髓细胞分化
- 批准号:82370111
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PRMT5选择性剪接异构体通过甲基化PDCD4调控肝癌辐射敏感性的机制研究
- 批准号:82304081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ac4C乙酰化修饰的HnRNP L选择性剪接EIF4G1调控糖代谢重编程介导前列腺癌免疫检查点阻断治疗无应答的机制研究
- 批准号:82303784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
由CathepsinH介导的YAP选择性剪接在辐射诱导细胞死亡及辐射敏感性中的作用
- 批准号:82373527
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
拟南芥剪接因子SR蛋白通过选择性剪接调控获得性耐热的机理研究
- 批准号:32300247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
- 批准号:
10638347 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
- 批准号:
10750357 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
Integrating Epidemiologic and Genomic Data to Elucidate the Genetic Overlap Between Congenital Anomalies and Pediatric Cancer
整合流行病学和基因组数据来阐明先天性异常和儿童癌症之间的遗传重叠
- 批准号:
10749761 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
- 批准号:
10748725 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
Characterizing an alternatively spliced NTRK2 isoform in development and cancer
表征发育和癌症中选择性剪接的 NTRK2 同工型
- 批准号:
10855131 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别: