Exploring novel regulatory mechanisms underlying enhancer activation and cell fate transition
探索增强子激活和细胞命运转变的新调控机制
基本信息
- 批准号:10471972
- 负责人:
- 金额:$ 17.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-08 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnimalsArchitectureAwardBindingBinding ProteinsBiochemistryBioinformaticsBiological AssayBiologyBruck-de Lange syndromeCRISPR screenCell Differentiation processCell MaintenanceCellsChromatinChromatin StructureDataDepositionDevelopmentDiseaseDoseDown-RegulationES Cell LineEducational workshopEmbryonic DevelopmentEnhancersEnsureEnvironmentEnzymesEpigenetic ProcessEquilibriumFamilyGene ExpressionGenesGenetic TranscriptionGenomeGenomic approachGoalsGrantHi-CHigher Order Chromatin StructureHistone H3HumanInstructionKDM1A geneKabuki Make-Up SyndromeKnock-outLeadLeadershipLysineMalignant NeoplasmsMentorsMethylationModelingMolecularMutationNamesOutputPathogenesisPathologyPathway interactionsPhasePlayPluripotent Stem CellsPostdoctoral FellowProcessProteomicsRegulationResearchRoleSET DomainStem Cell FactorTestingThalassemiaTrainingTranscriptional RegulationUniversitiesWritingantagonistbasecancer typecareercareer developmentchromosome conformation captureclinical applicationcourse developmentdevelopmental diseasedriver mutationembryonic stem cellexperiencegenetic corepressorgenome wide screengenome-widegraduate studenthigh throughput screeninghistone methyltransferasehuman diseaseinhibitorinnovationinsightloss of functionloss of function mutationmedical schoolsmembernew therapeutic targetnovelpluripotencyprogramsprotein complexrecruitskillsstem cell biologystem cell differentiationstem cellstargeted treatmenttherapy developmenttranscription factortranscriptome
项目摘要
Project Summary/Abstract
Misregulation of enhancer activity leads to various developmental disorders including thalassemia, Cornelia de
Lange syndrome, and Kabuki syndrome. The major enhancer regulator Mll4 belongs to the family of the Su(var)3-
9, Enhancer-of-zeste, Trithorax (SET) domain containing histone methyltransferases named COMplex of
Proteins ASsociated with Set1 (COMPASS), which places methylation marks at lysine 4 of histone H3 (H3K4).
Mll4 is essential for mammalian development and its heterozygous loss-of-function mutations lead to various
human diseases including Kabuki syndrome and cancer. I recently demonstrated that Mll4 is the major enzyme
depositing mono-methylation at H3K4 (H3K4me1), an enhancer-decorating epigenetic mark whose function
remains elusive. Moreover, I have defined catalytic activity dependent and independent functions of Mll4 in
enhancer modulation and stem cell differentiation, and have unveiled an antagonism between enhancer-binding
epigenetic machineries in transcriptional control that could underlie the developmental consequences of the
heterozygous loss-of-function mutations of Mll4 in human disease. Based on these findings, I hypothesize that
Mll4 cooperates with key transcription factors and epigenetic modifiers to modulate enhancer activity, chromatin
structure, and transcriptional outputs during stem cell maintenance and differentiation. The studies proposed
here aim to elucidate the molecular mechanisms of enhancer regulation, and to provide insights for developing
novel therapies targeting diseases driven by the loss of function of epigenetic modifiers. Specifically, the outlined
research will 1) elucidate how epigenetic marks impact enhancer functions and cell fate transition; 2) determine
the role of higher order chromatin structure in stem cell maintenance and differentiation; 3) identify novel factors
and pathways involved in modulating enhancer activity and determining cell fate. To achieve the long-term career
goal of defining the epigenetic mechanisms underlying mammalian development and disease, I will acquire
training in biochemistry, proteomics, bioinformatics, stem cell biology, and genome-wide screening during the
mentored phase of this application. Moreover, I will participate in grant writing workshops and career
development courses to strengthen my skills in writing and leadership. With the acquired training, I will be well-
prepared for the task of delineating the machineries and mechanisms in modulating gene expression, chromatin
structure, and cell fate determination in the independent R00 phase. In summary, the K99/R00 award, together
with the experiences that I have garnered as a graduate student and postdoc, the guidance from the mentors
and collaborators, and the superb research environment at Northwestern University's Feinberg School of
Medicine, will ensure a successful transition for me to continue my independent scientific career in the field of
stem cell biology and epigenetics.
项目概要/摘要
增强子活性的失调会导致各种发育障碍,包括地中海贫血、Cornelia de
兰格综合症和歌舞伎综合症。主要增强子调节因子 Mll4 属于 Su(var)3- 家族
9、Enhancer-of-zeste、Trithorax (SET) 结构域,含有名为 COMplex of 的组蛋白甲基转移酶
与 Set1 (COMPASS) 相关的蛋白质,将甲基化标记置于组蛋白 H3 (H3K4) 的赖氨酸 4 处。
Mll4 对于哺乳动物的发育至关重要,其杂合的功能丧失突变导致各种
人类疾病,包括歌舞伎综合症和癌症。我最近证明 Mll4 是主要酶
在 H3K4 (H3K4me1) 上沉积单甲基化,这是一种增强子修饰的表观遗传标记,其功能
仍然难以捉摸。此外,我定义了 Mll4 的催化活性依赖和独立功能
增强子调节和干细胞分化,并揭示了增强子结合之间的拮抗作用
转录控制中的表观遗传机制可能是发育后果的基础
人类疾病中 Mll4 的杂合功能丧失突变。根据这些发现,我假设
Mll4 与关键转录因子和表观遗传修饰剂合作调节增强子活性、染色质
干细胞维持和分化过程中的结构和转录输出。提出的研究
这里的目的是阐明增强子调控的分子机制,并为开发提供见解。
针对由表观遗传修饰剂功能丧失引起的疾病的新疗法。具体来说,概述了
研究将1)阐明表观遗传标记如何影响增强子功能和细胞命运转变; 2)确定
高阶染色质结构在干细胞维持和分化中的作用; 3)识别新因素
以及参与调节增强子活性和决定细胞命运的途径。实现长远的职业生涯
定义哺乳动物发育和疾病背后的表观遗传机制的目标,我将获得
生物化学、蛋白质组学、生物信息学、干细胞生物学和全基因组筛选培训
此应用程序的指导阶段。此外,我将参加资助写作研讨会和职业生涯
发展课程,以加强我的写作和领导技能。通过获得的训练,我会很好-
为描绘调节基因表达、染色质的机器和机制的任务做好准备
结构和独立R00期细胞命运的决定。综上所述,K99/R00奖,一起
凭借我作为研究生和博士后所获得的经验,导师的指导
和合作者,以及西北大学范伯格学院一流的研究环境
医学,将确保我成功过渡,继续我在医学领域的独立科学事业
干细胞生物学和表观遗传学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaixiang Cao其他文献
Kaixiang Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaixiang Cao', 18)}}的其他基金
Exploring novel regulatory mechanisms underlying enhancer activation and cell fate transition
探索增强子激活和细胞命运转变的新调控机制
- 批准号:
10259871 - 财政年份:2020
- 资助金额:
$ 17.36万 - 项目类别:
Exploring novel regulatory mechanisms underlying enhancer activation and cell fate transition
探索增强子激活和细胞命运转变的新调控机制
- 批准号:
9891069 - 财政年份:2019
- 资助金额:
$ 17.36万 - 项目类别:
相似国自然基金
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A Connectomic Analysis of a Developing Brain Undergoing Neurogenesis
正在经历神经发生的发育中大脑的连接组学分析
- 批准号:
10719296 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Neural basis of behavior in freely moving macaques
自由移动猕猴行为的神经基础
- 批准号:
10832869 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Investigating Stakeholder Perspectives to Inform Ethical Use of Organoids in Pediatric Rare Disease Research
调查利益相关者的观点,为儿科罕见病研究中类器官的道德使用提供信息
- 批准号:
10791976 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别: